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Abstract
In many domains, scientific progress relies more and more on our ability to exploit ever
growing volumes of data. However, when data grows, so does the complexity of man-
aging it. A key point is to deal with the complexity of data life cycle management, i.e.
the various operations applied to data from their creation to their deletion: transfer,
archival, replication, deletion, etc. These formerly straightforward operations become
intractable when data volume grows dramatically, because of the heterogeneity of data
management software on the one hand, and the complexity of the infrastructures in-
volved on the other. In this context, cooperation between different systems becomes
very complex and requires ad-hoc solutions and many human interventions.

This thesis contributes theoretical and practical tools that allow a rigorous and
efficient approach to data life cycle management in large scientific applications. To
this end, we study the software tools, the programming models and the infrastructures
commonly used by these applications. From this analysis, we devise a set of features that
must be taken into account for modeling the life cycle of data in scientific applications.

Our first contribution is a meta model that allows for the first time to represent
both formally and graphically the life cycle of data distributed not only in a system,
but in a set of systems, on heterogeneous infrastructures. It allows to formalize, analyze
and share the life cycles, naturally exposing replication, distribution and the different
data identifiers.

We then present Active Data, an implementation of this meta model. Once con-
nected to existing applications, Active Data exposes the progress of data at runtime to
users and programs. Active Data also keeps track of data when they pass from a system
to another, creating a unique high-level view and a global namespace.

Our third contribution is a programming model that allows to execute code at each
step of the data life cycle. Active Data programs have access to the complete state
of data, no matter in what system or on what infrastructure they are distributed on.
These programs can make local decisions based on a global knowledge and implement
numerous optimizations that could not be achieved until now.

We present micro-benchmark performance evaluations and use-cases that demon-
strate the expressivity of the programing model and the implementation quality. Our
last contribution is a Data surveillance framework for the APS (Advanced Photon
Source) implemented with Active Data and that allows scientists to monitor the progress
of their data, to automatize most manual tasks, to obtain notifications and to detect
and recover from many errors with no human intervention.

This work has promising perspectives in the field of Data Provenance and Open
Data, while facilitating collaboration between scientists from multiple communities.





v

Résumé
Dans tous les domaines, le progrès scientifique repose de plus en plus sur notre capacité
à exploiter des volumes toujours plus gigantesques de données. Cependant, alors que
le volume des données croit, leur gestion s’en complexifie d’autant. Un point clé est de
gérer la complexité de la gestion du cycle de vie des données, c’est à dire les diverses
opérations qu’elles subissent entre leur création et leur disparition : le transfert, l’archi-
vage, la réplication, la suppression, etc. Ces opérations, autrefois simples, deviennent
ingérables lorsque le volume des données augmente de manière importante à cause de
l’hétérogénéité des logiciels utilisés d’une part, et à cause de la complexité des infra-
structures mises en œuvre d’autre part. Dans ce contexte la coopération entre différents
systèmes est très compliquée et nécessite des solutions sous-optimales et de nombreuses
interventions humaines.

Le but de cette thèse est de proposer des outils théoriques et pratiques pour per-
mettre une approche rigoureuse et efficace de la gestion du cycle de vie des données
dans les grandes applications scientifiques. À cette fin, nous analysons les outils logi-
ciels, les modèles de programmation et les infrastructures distribuées communément
utilisés par ces applications. De cette analyse, nous déterminons les éléments à prendre
en compte pour modéliser efficacement le cycle de vie des données dans les applications
scientifiques.

Notre première contribution est un méta-modèle qui permet pour la première fois
de représenter formellement et graphiquement le cycle de vie de données présentes non
seulement dans un système, mais également dans un assemblage de systèmes sur des
infrastructures hétérogènes. Il permet de formaliser, d’analyser et de partager le cycle de
vie, en exposant naturellement la réplication, la distribution et les différents identifiants
des données.

Ensuite, nous présentons Active Data, une implémentation de ce méta-modèle. Une
fois connecté à des applications existantes, Active Data expose l’état d’avancement des
données au cours de l’exécution à des utilisateurs et à des programmes. Active Data
garde également trace des données lorsqu’elles passent d’un système à un autre, créant
un espace de nom global.

Notre troisième contribution est un modèle de programmation qui permet d’exécu-
ter du code à chaque étape du cycle de vie des données. Les programmes écrits avec
Active Data ont à tout moment accès à l’état complet des données, à la fois dans tous
les systèmes et dans toutes les infrastructures sur lesquels elles sont distribuées. Ces pro-
grammes peuvent donc prendre localement des décisions basées sur une connaissance
globale, et ainsi implémenter de nombreuses optimisations jusqu’alors impossibles.

Nous présentons des évaluations de performance et des cas d’utilisations qui at-
testent l’expressivité du modèle de programmation et la qualité de l’implémentation.
Notre dernière contribution est un outil de Surveillance des données pour l’expérience
APS (Advanced Photon Source) implémenté avec Active Data et qui permet aux scien-
tifiques de suivre le progrès de leurs données, d’automatiser la plupart des tâches ma-
nuelles, d’obtenir des notifications et de détecter et corriger de nombreuses erreurs sans
intervention humaine.

Ce travail présente des perspectives très intéressantes, en particulier dans les do-
maines de la provenance des données et de l’open data, tout en facilitant la collaboration
entre les scientifiques de communautés différentes.
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1
Introduction

We live in the era of Big Data. Over the last decade, data has become the
raw material of knowledge. Increasingly, and in many fields, from physics
to human sciences, scientific discoveries are fueled by our ability to acquire,

filter, transfer, analyze and share phenomenal quantities of data. As such, tremendous
efforts have been made by scientific and industrial communities to elaborate algorithms,
hardware and computing infrastructures to enable refining data sets, distillate informa-
tion and extract precious knowledge. But scientific and industrial data sets grow at an
alarming rate; novel scientific instruments like CERN’s LHC [1], the Large Synoptic
Survey Telescope [2], the OOI Cable System [3] and large scale simulations produce
Petabytes of data every year. Online services, pervasive computing, retail transactions,
visitor browsing traces, billion-edge social graphs are fast and steady sources of data
that have to be indexed, curated, stored and analyzed.

Managing increasingly large data sets calls for high-performance machines with a
lot of storage space, memory and high-speed CPU. As such, handling today’s data
sets always calls for distributed approaches. Current infrastructures composed of many
commodity machines are cheaper than traditional super computers but are also less
reliable [4]; hardware failures are expected daily and the burden of coping with them
has been transferred to the software stack. Additionally, data sets are dynamic: they
can grow or shrink over time and get partially updated. As a result, data intensive
experiments and applications have become too complex for many programmers: parallel
and distributed computing, synchronization, hardware failures recovery are notoriously
difficult problems that often produce poor design, performance, resources utilization
and often erroneous results.

In addition to the difficulties coming from the infrastructures, a great deal of the
big data challenge also comes from operations that are fairly trivial on reasonable-size
data, but become impractical when data grow too large. Transferring large data is in-
credibly slow and many errors are to be expected; the indexing and the filtering of big
data must be distributed because data sets cannot fit on a single machine; replication
between multiple distant sites must be coordinated to avoid data loss and allow descent
access time to big data; storing big data requires sophisticated systems that make up
for poor disk performance, and so forth. Part of this complexity is alleviated by novel
distributed storage systems, frameworks, programming models, workflow systems and
tools, which abstract low-level details like failure detection, and retries. However when
it comes to managing large and dynamic data sets, there is no “one-size-fits-all” solution;
applications involve most of the time a fragile assemblage of software systems that were
not designed to collaborate, are glued together using ad-hoc techniques and require
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human intervention from time to time. When data keep growing there is a point where
so many things happen at the same time that users get overwhelmed and detecting the
small things that go wrong in the mass of things that go right become impractical.

We call Data Life Cycle all these operations that are performed on data from their
creation to their deletion e.g, acquisition, transfer, filtering, analysis, replication, storage
and archival; we call Data Life Cycle Management (DLCM) the orchestration of these
operations, whether with a simple script or with a more sophisticated workflow system.
DLCM is unavoidable and requires increasing efforts, which makes it the corner stone
of data-intensive science. Efficient and safe DLCM will only become more decisive in
the near future, and appropriate tools and techniques must be developed to alleviate it
and let scientists focus on their science.

This thesis defends the idea that most of the difficulty of DLCM comes from the
infrastructures on the one hand, and from the applications on the other. Removing
this difficulty requires a constant flow of information between both: software must be
able to react to infrastructure events on their own, while the infrastructure must adapt
to application needs. Collaboration between heterogeneous systems must allow inter-
system optimizations and error recovery with no user intervention. Moreover, DLCM
tasks must be easy to program, for everyone. In this spirit, this thesis proposes Active
Data, a meta model that allows for the first time to formally represent the life cycle of
data that are distributed on multiple systems and heterogeneous infrastructures. From
this meta model, that allows to analyze and share data life cycles, we develop the Active
Data programing model. This novel programming model enables users to observe the
progress of their data and to automatically execute custom code at key steps in the life
cycle. It offers a unique, high-level view of all the copies of a single data item while it
is present in multiple, non-collaborative systems. Using this high-level view, one can
learn the state of their data at any time in the most complex applications, identify
potential bottlenecks and easily program applications that manipulate large distributed
data sets.

1.1 Objectives
Considering the challenges due both to heterogeneous distributed infrastructures and
data life cycle management systems, this thesis aims at offering a truly data-centered
formalism, runtime system and programming model that facilitates monitoring, decision
making, running management tasks and overall helps preserve the quality of data assets.

We elaborate the objectives of this thesis as follows:

1. To analyze the state-of-the-art in distributed data management, workflow systems
and programming models to point out their limitations and propose an approach
to make distributed data management smarter and easier;

2. To provide a meta-model for representing and exposing the inner life cycle of any
data management system, the end-to-end life cycle of data passing through mul-
tiple systems and a model for integrating data identifiers into a single namespace;

3. To propose an implementation of the meta-model that allows the life cycle of
distributed data to be recorded and examined by users and programs;

4. To propose a programming model that allows to develop data management appli-
cations by reacting to life cycle events, using the meta-model implementation;
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5. To evaluate the efficiency of the runtime system and the expressivity of the pro-
gramming model with a series of benchmarks and pertinent use-cases;

6. To integrate and evaluate the runtime system in a real life data-intensive appli-
cation.

1.2 Contributions
The main contributions of this thesis are presented in this section.

A meta-model for distributed data life cycle The first contribution of this thesis
is the first formal data-centric meta model for representing the life cycle of distributed
data sets simultaneously present in multiple, heterogeneous and non-collaborating sys-
tems. The meta model captures every operation applied to data, from end-to-end, and
naturally represents the distribution of data. Finally, the meta model formally repre-
sents the flow of data between systems, keeping track of data identifiers, origin and
lineage.

A implementation of the meta-model The second contribution is Active Data,
an implementation of the meta model that offers programs the same view that the
graphical model offers to users. Active Data allows users and programs to observe data
evolving at runtime inside applications, allowing advanced optimizations. It also keeps
track of data identifiers as data pass from a system to another, constructing a single
logical namespace for multiple copies (or replicas) of data in different systems that would
otherwise look completely unrelated. Overall, the implementation of the life cycle meta
model opens the door to many optimizations related to distributing data on a platform
or when recovering from failures; for example, now a system can look beyond its scope
and learn where additional copies of lost data are located.

The Active Data programming model The third important contribution of this
thesis is a programming model that is based on the life cycle meta model and its
implementation. The Active Data programming model and the associated runtime
system allow users of data management systems to have code automatically executed
when events on data happen. It can be used to program essential data management
operations, to automatically capture provenance information, to optimize inter-system
collaboration and to recover from failures that are hard to detect and used to require
human intervention.

Use-cases and evaluation A set of synthetic benchmarks run on the Grid’5000
experimental testbed show the performance one can expect from the implementation and
a set of use-cases evaluate the expressivity of the model with typical data management
situations.

Data surveillance framework The last contribution of this thesis is an application
to the Advanced Photon Source (APS) experiment that involves multiple data man-
agement systems and infrastructures. The application constructs a Data Surveillance
Framework for the APS that allows scientists to monitor the progress of their experi-
ments, to automate most manual tasks, to automatically notify the community of newly
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produced data sets and share them, and finally to discover errors involving multiple sys-
tems and automatically recover from them. This work has been done in collaboration
with Ian Foster and Kyle Chard during a visit at the University of Chicago and Argonne
National Lab.

1.3 Structure of this Manuscript
This manuscript is organized as follows. Chapter 2 reviews the literature on infras-
tructures, techniques, programming models and systems for large-scale distributed data
management. Chapter 3 introduces our approach, Active Data, through its meta model,
implementation, and its programming model. Active Data is evaluated with micro-
benchmarks and synthetic use-cases in Chapter 4. Chapter 5 relates how Active Data
was used to implement a Data Surveillance Framework for an e-Science experiment. We
present conclusions and perspectives in Chapter 6.

1.4 Publications
The work presented in this thesis has been published in several research papers that are
listed hereafter.

International Journals
• Anthony Simonet, Gilles Fedak, and Matei Ripeanu. Active Data: A Programming

Model to Manage Data Life Cycle Across Heterogeneous Systems and Infrastruc-
tures. Future Generation Computer Systems, page 49, 2015

• Gabriel Antoniu, Julien Bigot, Christophe Blanchet, Luc Bougé, François Bri-
ant, Franck Cappello, Alexandru Costan, Frédéric Desprez, Gilles Fedak, Syl-
vain Gault, Kate Keahey, Bogdan Nicolae, Christian Pérez, Anthony Simonet,
Frédéric Suter, Bing Tang, and Raphael Terreux. Scalable data management for
mapreduce-based data-intensive applications: a view for cloud and hybrid infras-
tructures. International Journal of Cloud Computing, 2(2):150–170, 2013

International Conferences
• Anthony Simonet, Kyle Chard, Gilles Fedak, and Ian Foster. Using active data

to provide smart data surveillance to e-science users. In Proceedings of the 23rd
Euromicro International Conference on Parallel, Distributed and Network-based
Processing, PDP 2015. IEEE, 2015

• Gabriel Antoniu, Julien Bigot, Christophe Blanchet, Luc Bougé, François Bri-
ant, Franck Cappello, Alexandru Costan, Frédéric Desprez, Gilles Fedak, Sylvain
Gault, Kate Keahey, Bogdan Nicolae, Christian Pérez, Anthony Simonet, Frédéric
Suter, Bing Tang, and Raphael Terreux. Towards Scalable Data Management for
Map-Reduce-based Data-Intensive Applications on Cloud and Hybrid Infrastruc-
tures. In 1st International IBM Cloud Academy Conference - ICA CON 2012,
Research Triangle Park, North Carolina, 2012
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Workshop
• Anthony Simonet, Gilles Fedak, Matei Ripeanu, and Samer Al-Kiswany. Active

data: a data-centric approach to data life-cycle management. In Proceedings of
the 8th Parallel Data Storage Workshop, pages 39–44. ACM, 2013

National Conference
• Anthony Simonet. Active data: Un modèle pour représenter et programmer le

cycle de vie des données distribuées. In ComPAS’2014, 2014

Research Report
• Anthony Simonet, Gilles Fedak, and Matei Ripeanu. Active Data: A Programming

Model to Manage Data Life Cycle Across Heterogeneous Systems and Infrastruc-
tures. Research Report RR-8062, Inria - Research Centre Grenoble – Rhône-Alpes
; ENS Lyon ; University of British Columbia, 2015
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2
Large scale, Data Intensive
Distributed Computing
2.1 Data Intensive Applications
While very large data sets are at the heart of many scientific events and are subject to
an increasing number of research projects, the very definition of Big Data is still hard
to capture because of the lack of consensus on the matter. Beyond what is big data
and what is not, this first section highlights research challenges the computer science
community and other scientific communities are facing together.

2.1.1 Big Data
The definition of big data is still being actively discussed [12–14]. The “3 Vs” are
however part of many definitions. They are i) Volume: big data implies large volumes
of data; although the line at which big data starts is not clearly drawn, it seems to
be somewhere between a few Terabytes a few Petabytes of data. ii) Velocity: the
speed at which data is generated or acquired is extremely fast and requires short cycles
to produce interpretable outcomes. iii) Variety: data comes in many forms, either
structured, semi-structured or unstructured (e.g, image and video files).

A fourth V for Value appeared later in the literature and is now regarded as an
essential component of big data. Big data have the potential for very high value, but
its extraction requires considerable work (“huge value but very low density” [12]). Big
data can be regarded as raw material that has no value on its own and gets value
after being transformed into refined information. One could say that industries that
get a lot of data “for free” (click and visitor trackers, user ratings and comments, social
media integration, search engines keywords etc.) but do not exploit it are sitting on a
gold mine. The same is true for science where discoveries depend more and more on
the exploitation of huge data sets produced by large scale simulations, new scientific
instruments and sensor networks.

We now understand that there can be no empirical definition of big data, and that
big data is not necessarily large; instead it seems to start with a matter of scale. In [15],
Manovich explains how yesterday’s big data can today fit on a single laptop computer.
Thus, data may simply become big data when it is large and fast enough so that tra-
ditional computer systems cannot process it anymore. Or simply put, data is big data
when it is thrown at us so fast that our methods and systems cannot keep up.
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2.1.2 The Origins of Data
A first source of very large data sets is the Internet and pervasive online services that
users all over access on multiple devices from all over the world. Big data is constituted
from the data they produce and submit willingly (social network entries, customer
reviews, shared pictures and videos, files stored by online services, emails) and data
they create inadvertently (search queries, browsing habits, online advertisement, leaving
breadcrumbs on visited websites that seem to have nothing in common.

Internet companies and social networks in particular create billion-edge graphs that
need be be analyzed to extract sense and restitute it to engaged users.

Moreover, new sources of big data are appearing, like the Internet of Things (IoT) [16,
17]. IoT designates a paradigm where a huge number of ubiquitous sensor-enabled de-
vices (home appliances, smartphones, medical devices, environmental sensors) record
data about their environment and user interactions and daily life; the recorded data
is sent to remote services that are in charge of the heavy computation. These devices
may record data about virtually anything from air quality, to seismology, to traffic and
parking spots, to medical data and user whereabouts. This everything connected fashion
creates a highly dynamic and distributed production of big data that match the four
Vs: huge volumes are produced fast by heterogenous devices, hence various formats and
they hold high value at low density.

2.1.3 Challenges
Managing multi-petabyte data sets naturally calls for distribution and deduplication.
In this context, maintaining the quality of service users are used to (quick access, high
bandwidth, rare data loss, etc.) is challenging. We need new algorithms to filter,
transfer, split, store, index, version and deduplicate data that scale to thousands of
machines.

Thus, big data also calls for new infrastructures that fit big data properties; infras-
tructures for big data must be always on to keep-up with incoming data; they must be
elastic to accommodate variations in data sizes; their compute and I/O performance
must satisfy big data workloads. At the same time adding disks and computers to a
system automatically increases the number of faults that happen daily. We have reached
a point where hardware faults are just expected and where the software stack needs to
cope with them.

Big data involves more complicated life cycles. Data often arrive faster than it can
be processed; at the same time, the value of data depend on the speed at which it is
exploited. This means decisions about which data to keep and which data to discard,
filtering and many life cycle operations must be made as fast as possible, despite their
volume. New programming models are also necessary to help programers and data
scientists focus on analytical code and program applications as easily as for traditional
data sets.

Many large data sets involve several communities that can collaborate to extract
information from data or seek different results. Geographically dispersed communities
require major advanced in networks to move these data sets and social tools to support
information sharing and lineage tracking. These tools must be optimized to cope with
the size and variety of big data (structured, semi-structured and unstructured).
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2.2 Cyber-Infrastructures for Big Data
The emergence of big data science has driven the need for larger storage and computing
infrastructures. In this section, we introduce the most common cyber-infrastructures
found in companies and research institute to acquire, store and process large data sets.

2.2.1 Data Centers
The emergence of big data applications has lead companies and public institutions to
invest in large computing clusters specially dedicated to storing and exploiting large
volumes of data. Data centers are composed of multicore machines grouped in clusters;
clusters are closely located and connected with a high performance Local Area Network
(LAN). All machines in a cluster—also called nodes—share the same hardware and most
of the time run the same operating system. Big data has driven the need for larger data
centers that can fit up to hundreds of thousands of nodes. As the number of nodes
increases, even high-end hardware is subject to daily failures of some of the nodes,
which made the case for using cheaper hardware, leading to what is now commonly
know as commodity clusters [18, 19]. Google clusters [4] form a good example of very
large data centers composed of commodity computers and of software robust to many
hardware failures.

Data centers offer premium facilities to companies and universities, but their high
cost make them unaffordable to the smaller ones. Managing a data center and running
jobs require specialized software to monitor machines and to accommodate the usage of
several users. This software layer, often called batch scheduler is a critical middleware
to guarantee the availability and the security of the platform. Thus, hardware and
software maintenance requires trained administrators that adds up to operating costs.

2.2.2 Data Grids
Data science had driven the need to share and transport large data sets over distant
location, leading to the development of worldwide Data Grids [20, 21]. A data grid
is an integrated architecture that coordinates access to heterogeneous resources from
distant data centers into a Virtual Organization. A data grid federates storage, com-
pute resources and services from distant sites managed by different institutions and
connected by a Wide Area Network (WAN). Services store, index, cache, replicate,
transfer and serve data transparently for user’s applications [22]. Replication, which is
used for fault tolerance and I/O performance [23] (improving bandwidth and locality),
hides the different storage layers and naming conventions of each sites so users only
see a unique global namespace. Data grids thus rely on traditional institutional grid
infrastructures—originally defined in [24], [25] and [26]—on top of which they build a
set of data-oriented services.

The EU Data Grid Project [27,28] has been one of the first implementations of data
grid; it was built to support I/O intensive experiments High-Energy Physics, Earth Ob-
servation and Biology. CERN’s Worldwide LHC Computing Grid [29] supports experi-
ments with the 30 Petabytes of data generated by the Large Hadron Collider annually;
it currently includes 170 sites in 41 countries.
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2.2.3 Clouds Platforms
Cloud computing is a paradigm in which virtually-unlimited resources are accessed on-
demand, in a scalable way, and abstracted with virtualization. In clouds, resources are
remote, administered by third parties and available almost as a “public utility”, quoting
Foster et al. in [30]. Cloud computing features several layers of abstractions on the re-
sources they provide, enabling virtually any application to run [31]; Infrastructure-as-a-
Service (IaaS) provides users with virtual machines and a virtual network on which they
can run any application; Platform-as-a-Service (PaaS) provides users with abstractions
(libraries and software components) to program applications and an execution platform
to run them transparently; Software-as-a-Service (SaaS) provides ready-to-use web ap-
plications and services.

Data Grids require scientists to join into important multi-year projects and expensive
administrative, development and funding efforts. Many institutions and research groups
cannot federate a large enough community to get involved in a grid project; others could
simply not afford it. To these scientists, cloud computing [32–34] has given access to
huge computing and storage resources at an affordable cost (with no initial investment
necessary). With their on demand fashion, flexible computing resources and data-
oriented services available in pay-as-you-go, clouds have arguably a lot in common with
the idea people used to have of the grid [30].

2.2.4 Desktop Grids
Desktop grids are an other solution for scientists with big resource needs but less money
at the cost of more heterogeneity and a more complex fault model. Desktop grids
aggregate the computing power and/or storage resources of idle desktop computers. The
best illustration of a successful desktop grid is probably the SETI@home project [35]
that performs at more than 1,800 TeraFLOPS [36] using the BOINC middleware [37].
The resources a desktop grid aggregates can belong to a single organization, like a
university or a company; they can also be volunteered by individuals, which is why this
approach is also referred to as volunteer computing. BonjourGrid [38] is a system that
allows the deployment and the orchestration of several desktop grid middleware.

Desktop grids have traditionally been limited to Bag of Task (BoT ) applications
that are compute intensive, require few input data and produce small output data
and with low quality of service requirements. Current research demonstrate successful
attempts at implementing more sophisticated applications and programming models
like the Moon [39] MapReduce implementation.

2.2.5 Hybrid Infrastructures
There are big incentives to run data and I/O intensive scientific applications on hybrid
infrastructures, i.e. infrastructures that federate the resources of other infrastructures.
Combining local and remote resources like a grid or a public cloud is a use case that
allows to meet QoS constraints at a controlled cost. When using desktop grids, there is
obviously a tradeoff to make between performance, quality of service and cost that is
illustrated by SpeQuloS [40]. SpeQuloS proposes to use volunteered hosts as much as
possible, while using paid cloud instances when necessary to meet some QoS constraints
for Bag of Task applications. Another frequent scenario is to have a desktop grid
scheduler service running on a private cluster to coordinate volunteered nodes, while
storing executables and scientific data in the cloud for better availability, lower latency
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Platform type Administration Initial cost Usage cost Homogeneity
Data center Institution +++ ++ Yes

Data Grid Institution (locally)
& Grid project (globally) +++ ++ No

Cloud Third party – ++ Yes
Desktop Grid DG project + – No
Hybrid Depends on the platforms used No

Table 2.1: Comparison of distributed infrastructures in terms of administration effort,
cost and homogeneity.

and resilience. Table 2.1 illustrates this tradeoff and compares infrastructures in terms
of administration effort (who manages the platform), initial and usage cost from “–”
(near zero) to “+++” (very expensive) and homogeneity of resources.

While hybrid infrastructures are interesting for their flexibility and cost, implement-
ing them require unified interfaces and tools for accessing resources. Currently, there
seems to be no such interface and users tend to use ad-hoc solutions that produce
non-reusable code and heavy maintenance efforts.

2.3 Data Management Systems
Large volumes of data automatically require to distribute storage and management tasks
to many disks and machines. Many strategies for distributed storage have been studied,
considering performance, fault tolerance needs, the type of queries to support, the size
of updates to optimize and much more. In this section we discuss research in parallel
and distributed data management and storage systems, and how they compromise to
optimize reliability, access time, concurrency, consistency and querying.

2.3.1 Distributed Filesystems and Distributed Datastores
Big data science is new and often supported by scientists that are not computing ex-
perts. To facilitate access to data sets, many sophisticated distributed storage systems
feature a POSIX filesystem interface. They allow the storage system to be used like any
local filesystem while offering large storage aggregated from multiple servers, usually
through a network [41]. They allow users to use remote storage space transparently:
the true location of files is hidden and users are presented a unique global namespace
that can be used directly by applications; this feature is called naming virtualization.
Distributed filesystems can also transparently implement replication for performance or
fault tolerance with various placement strategies.

Distributed filesystems face two challenges in big data applications. First, some
client applications need to handle many small files, leading to the file-count problem [42]:
the space for storing metadata can exceed the space used by the actual data, and the
sum of parallel operations can exceed the load of I/O operations. Second, distributed
filesystems often have to handle unusually large files; they can come either as a mean of
working around the file-count problem, packing small files into large blobs of unstruc-
tured data, or because of particular application needs.
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Scalability can be improved by separating metadata operations that are related
to the namespace (open, rename) from I/O operations (read, write). This is what
Ceph [43], GFS [44] and HDFS [45] do; they replace traditional disks with Object
Storage Devices (OSD) that comprise a disk, a controller and network; OSD are able to
serve I/O operations directly, leaving namespace management to a master. In addition,
GFS and HDFS now have distributed masters able to manage up to hundreds of millions
of files each. Ceph and Lustre [46] removed the need for a master for some operations;
replacing inode and object lists by hash functions, they allow agents to discover the
physical location of a data block without having to query a centralized catalog; with
this architecture, clients can negotiate operations directly with the OSD that host the
object they want to access.

All these systems now seem to agree that while the number of machines and disks
grow with computing infrastructures, “component failures are the norm, not the ex-
ception” [43, 44]. Thus, they tend not to rely on traditional protections like RAID,
but to consider instead every disk as unreliable. Replication, used by both GFS and
HDFS allows to implement load balancing and reliability. Other techniques for building
reliable storage from unreliable hardware requires significantly more complex code for
storage systems. Replication, load balancing and consistency checks are hidden from
the user, so they can use the distributed file system in a similar way as they use a local
filesystem. Chirp [47] is an other distributed filesystem that offers a POSIX compatible
interface and is suited for clusters and grids, and support Wide Area Networks. Another
interesting feature of Chirp is that it runs in user space, allowing to deploy it on top of
desktop grids, which makes it suitable for hybrid infrastructures that comprise desktop
grids.

The FUSE [48] (Filesystem in Userspace) project has helped developers of dis-
tributed datastore offer a POSIX-compliant interface with few effort. FUSE is a Linux
kernel module that allows programs to emulate filesystems in user space with no admin-
istrative privileges. Thanks to this feature, it is well suited for deployment of complex
storage systems on hybrid infrastructures that comprise desktop grids where programs
run with no privilege. FUSE is used by Ceph and Chirp to provide their POSIX inter-
face.

However, offering a POSIX-compliant interface often comes in the way of perfor-
mance; this is why many storage systems, while keeping a semantic close to file sys-
tems, do not implement standard interfaces. These storage systems are commonly called
distributed datastores. Distributed datastores already cited include GFS and HDFS.
BlobSeer [49] is another distributed datastore that is optimized for large unstructured
blobs and write-once/read-many applications using versioning as primary concurrency
control.

2.3.2 In-Memory Datastores
In many big data applications, short-lived files are used for inter-process communication
(the result of a process is used as input to another process), caching and checkpointing.
While these files can be lost and regenerated, their access time is critical to applications
performance. In-memory storage is a good compromise for this class of files; the band-
width of memory is orders of magnitude larger than disks and the latency of memory is
orders of magnitude faster. At the same time, volatility is not a problem since the files
must only live for the duration of the application.

MosaStore [50] is an in-memory “versatile storage system” backed up by disk storage



2.3. Data Management Systems 13

aggregated with GPFS [51]. MosaStore aggregates underutilized resources of cluster or
desktop nodes; it adapts to specific application needs by satisfying per-file constraints
at deployment time. These constraint are expressed in terms of access patterns (broad-
cast, scatter, reduce, etc.) and in turn MosaStore optimizes file placement and replica-
tion [52]. A prediction mechanism was also studied in [53] to automatically adapt the
storage configuration of I/O intensive workflows.

RAMClouds [54] also proposes to store flies in RAM for performance but attempts
to extend the application scope of in-memory distributed datastores by asynchronously
persisting data to disks. MemCached [55] uses a hash table design where each aggregated
node is a bucket. A single machine reads client requests, performs the lookup and directs
clients to the machine that will handle the read or write request; this design allows
Memcached to scale up to dozens of nodes with constant complexity under heavy write
load.

2.3.3 Databases for Big Data
The large volumes of big data does not fit well in traditional relational databases because
data is often semi-structured or unstructured and supporting a schema makes data
grow even larger. To support big data, database management systems have evolved in
two ways: relational databases can now be distributed and systems storing data in an
unstructured way have appeared.

Just like distributed filesystems, distributed databases had to relax some proper-
ties—data model and consistency, for example—to horizontally scale to the need of
current data-intensive applications.

2.3.3.1 Distributed Relational Databases
Driven by industrial needs on one hand, and the ease to parallelize SQL queries on the
other, traditional relational databases evolved to a distributed paradigme in the late
1980’s [56]. Parallelism allowed Relational Database Management Systems (RDBMS)
to handle larger volumes of data, to serve numerous concurrent queries [57] and transac-
tions while maintaining ACID properties (Atomicity, Consistency, Isolation and Dura-
bility) [58]. Distributed databases comprise several Database Management Systems
instances controlled by a coordinator. The distributed DBMS instances can be used for
performance—executing queries in parallel, redirecting queries to less loaded instances—
or availability and reliability through replication [59]. The effective distribution of data
objects amongst the DBMS and the strategies to redirect queries attempt to optimize
one or several of these aspects.

However, unstructured data sets cannot fit in a relational database that requires a
strict schema. Importing even semi-structured data sets proves to be unpractical due
to the lengthy conversion and disk space overhead [15] induced by the relational model.

2.3.3.2 NoSql Databases
NoSql databases have appeared only recently to store unstructured big data for which
the relational model is inefficient and burdensome. Document, object and key-value
DBMS implement storage, transaction and query models that allow complex and inter-
linked data structures to be accessed in a natural way by data-intensive applications
while enabling horizontal scalability. However, this shift comes at the price of by re-
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laxing ACID properties for the less restrictive BASE (Basic Availability, Soft state,
Eventual consistency) [60].

While document databases allow to store arbitrary documents, either structured or
unstructured, the trend in big data applications seems to be large unstructured data
sets. Often coded as XML or JSON, these documents can be media files (sound, image,
video), log files, text documents (blog entries, Tweets) and streams. MongoBD [61]
(open-source) and CouchDB [62] (commercial) are two examples of database systems
storing arbitrary documents in JSON and in which additional nodes can be added on
demand to to satisfy the need of data-intensive applications [60].

Key-value store are also increasingly attractive thanks to their hash-map-like pattern
where values can often be arbitrary byte strings. Redis [63], Voldemort [64] (open-
source) and DynamoDB [65] (commercial) are good examples of this trend.

Google’s Bigtable [66] is a distributed datastore that could be qualified of “hybrid”; it
looks like a distributed database management system in the way it supports structured
data. Bigtable organizes data in rows and tables but does not support relations. These
properties, paired with versioning allow for a efficient management of very large data
sets with many small updates. However, the data model similar to a three-dimensional
map indexed by row, column and timestamp make it look more like a key-value store.
Hbase [67], maintained by the Apache Software Foundation is an open-source project
that provides BigTable like features, allowing to store semi-structured or unstructured
data on top of HDFS [45].

2.3.4 Rule-Based Systems
Increased data set sizes implies more administrative tasks to control and more access
policies to enforce, as managing and the exploiting large data sets often involve mul-
tiple programs that perform operations independently. These programs must fulfill a
set of policies defined by the organization; to satisfy these policies, programs typically
perform consistency checks on their own, ensuring that they leave data in a valid state
when they return. However, placing these checks at the application level forces admin-
istrators to maintain many different pieces of code, adds a burden when replacing a
program with another and may leave data inconsistent due to application failures. Rule
based storage systems address these issues by moving consistency checks and policy
enforcement operations from the programs to the storage system.

A rule-based system allows administrators to define micro services—consistency
checks and other housekeeping tasks—and the conditions in which to run them. The rule
engine is requested—either periodically or occasionally—to invoke micro services. Micro
services are actually invoked only for data objects that match the defined conditions.

In this field, iRODS [68] occupies a prominent place thanks to a complete set of
features with a distributed datastore with naming virtualization, a catalog for user-
defined metadata and a domain-specific rule language for system and user-defined rules.

2.4 Transferring Large Data sets
Cyber-infrastructures involve moving large volumes of data between sites; some trans-
fers are explicitly performed by scientific workflows: raw data are moved from the
instruments to the storage infrastructure and then to the computing infrastructure and
so forth; some transfers are performed silently by data management systems for load
balancing and replication management, for example.
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Classical protocols such as HTTP, FTP, SCP and rsync are still used by data in-
tensive applications but mostly for small files, as they tend to be unreliable and scale
poorly when the transferred files exceed a few gigabytes in size [69]. Thus, transferring
large files requires new strategies to deal with errors and retries, use multiple channels
in parallel and cope with unfriendly network conditions. The BitTorrent [70] Peer-
to-Peer file transfer protocol addresses this large file problem by splitting them into
smaller pieces called “chunks” that are easier to handle. Splitting files allows to verify
the integrity of transferred chunks using checksums; this way, only chunks that differ
between the origin and the destination are retried. This same approach (splitting and
checksumming) is also used by rsync.

Considering that different files often need different transfer protocols due to their
size, the transfer type (one-to-one, one-to-many etc.) or security concerns, BitDew [71]
offers a single interface to several protocols (HTTP, FTP, SCP, BitTorrent, email,
Saga [72]). BitDew allows to select a different transfer protocol for each file. Stork [73]
focuses on data placement and also offers a single interface for several protocols; it is
also able to choose which protocol suits best a particular situation. GatorShare [74]
offers features similar to BitDew and offers a filesystem interface that eases application
development.

To lift the burden of using these systems, that non-computer scientists would still
consider as low-level, several SaaS operated services have appeared. Globus Online [75]
is the SaaS counterpart of the Globus toolkit [76] and implements the GridFTP [77] pro-
tocol, offering a simple user interface for moving files between distant sites. GridFTP
upgrades the FTP protocol for parallel high throughput and secure data transfers be-
tween remote sites. It eliminates part of network and disk contention by allowing files
to be transferred from several sources simultaneously.

2.5 Programming Models for Distributed and Data
Intensive Applications

Big data generates complex experimental workflows where data management occupies
a large portion of the code. To make big data applications accessible to the mass, many
programming models with a common goal have emerged: enabling users, scientists and
companies to focus on their analytical code, abstracting everything; the literature now
offers plenty of options for very specific application domains, so that programmers are
free from thread programming, fault tolerance, remote procedure calls, data movements
etc.

2.5.1 Programing Models with Implicit Parallelism
Writing efficient parallel and distributed code is notoriously challenging for computer
scientists and non-computer scientists alike due to the inherent difficulty of concurrency,
synchronization and efficient resource allocation [78]. Programing models and languages
with implicit parallelism aim at automatically building parallel programs from sequen-
tial building blocks and as been discussed for a long time now [79]. A more recent
challenge aims at adapting this approach to distributed applications, allowing program-
mers that are not experts in distributed computing to program distributed applications
by focusing on what matters to them—their analytical code—and free them from low-
level implementation concerns. As a result, implicit parallelism has started to appear
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Fig. 3 Taxonomy of MapReduce improvements for efficient query processing

– Lack of interactive or real-time processing: MapReduce
is designed as a highly fault-tolerant system for batch
processing of long-running jobs on very large data sets.
However, its very design hinders efficient support for
interactive or real-time processing, which requires fast
processing times. The reason is that to guarantee fault-
tolerance, MapReduce introduces various overheads that
negatively impact its performance. Examples of such
overheads include frequent writing of output to disk (e.g.,
between multiple jobs), transferring big amounts of data
in the network, limited exploitation of main memory,
delays for job initiation and scheduling, extensive com-
munication between tasks for failure detection. However,
numerous applications require fast response times, inter-
active analysis, online analytics, and these requirements
are hardly met by the performance of MapReduce.

– Lack of support for n-way operations: Processing n-way
operations over data originating from multiple sources is
not naturally supported by MapReduce. Such operations
include (among others) join, union, intersection, and can
be binary operations (n = 2) or multi-way operations
(n > 2). Taking the prominent example of a join, many
analytical tasks typically require accessing and process-
ing data from multiple relations. In contrast, the design
of MapReduce is not flexible enough to support n-way
operations with the same simplicity and intuitiveness as
data coming from a single source (e.g., single file).

4 MapReduce improvements

In this section, an overview is provided of various methods
and techniques present in the existing literature for improv-
ing the performance of MapReduce. All approaches are cat-
egorized based on the introduced improvement. We organize

the categories of MapReduce improvements in a taxonomy,
illustrated in Fig. 3.

Table 2 classifies existing approaches for improved proces-
sing based on their optimization objectives. We determine the
primary objective (marked with ♠ in the table), and then, we
also identify secondary objectives (marked with ♦).

4.1 Data access

Efficient access to data is an essential step for achieving
improved performance during query processing. We identify
three subcategories of data access, namely indexing, inten-
tional data placement, and data layouts.

4.1.1 Indexing

Hadoop++ [36] is a system that provides indexing function-
ality for data stored in HDFS by means of User-defined Func-
tions (UDFs), i.e., without modifying the Hadoop framework
at all. The indexing information (called Trojan Indexes) is
injected into logical input splits and serves as a cover index
for the data inside the split. Moreover, the index is created
at load time, thus imposing no overhead in query process-
ing. Hadoop++ also supports joins by co-partitioning data
and colocating them at load time. Intuitively, this enables the
join to be processed at the map side, rather than at the reduce
side (which entails expensive data transfer/shuffling in the
network). Hadoop++ has been compared against HadoopDB
and shown to outperform it [36].

HAIL [37] improves the long index creation times of
Hadoop++, by exploiting the n replicas (typically n = 3)
maintained in Hadoop by default for fault-tolerance and by
building a different clustered index for each replica. At query
time, the most suitable index to the query is selected, and the
particular replica of the data is scanned during the map phase.
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Figure 2.1: Taxonomy of MapReduce improvements for efficient query processing
(source: Doulkeridis et al. [83]). Investigated improvement for covers everything from
the storage layer to scheduling and some aspects of the programming model itself.

in programing models for distributed environments.
Implicit parallelism in the context of distributed computing is a powerful model

in which users provide serial code or implement high-level interfaces, and then rely
on a distributed runtime system to automatically distribute and run this code on a
set of machines. Inter-process communication, threads and low-level synchronization,
processes and data movements are also managed by the runtime environment. Thus,
in addition to easing the development of data-intensive applications, this model often
leads to a better usage of resources and safer code, the optimisation effort relying at
the framework level.

2.5.1.1 MapReduce and Mapreduce-based programming models

MapReduce [80] introduced by Google in 2008 is probably the most famous and most
widely used programming model featuring implicit parallelism. MapReduce allows users
to program data processing applications by implementing only two primitives: “map”
and “reduce”. A MapReduce framework then runs the implemented code on a distributed
infrastructure, tracks progress, retries failed tasks and deals with data movements and
load balancing. There exists many frameworks implementing the MapReduce program-
ming model; Google’s MapReduce runs on top of a GFS [44] cluster, collocating storage
and computation for efficiency; this strategy is also applied by Hadoop [81] which with
HDFS [45] makes the most widely used open-source MapReduce implementation.

A lot of effort has been made by the distributed data processing community into
optimizing MapReduce for a wide range of use-cases [82]. [83] proposes an extensive
survey of this optimizations and Figure 2.1 gives an idea of how much effort has been
made into fitting common problems into the MapReduce programming model.

Thus, numerous programing models have been derived from MapReduce or attempt
to broaden the class of applications the framework can support. MapReduce Online [84]
makes MapReduce suitable for stream processing and online aggregation; Twister [85]
and Haloop [86] support iterative MapReduce jobs; Pig Latin [87] is a language and
a runtime system enabling high-level queries and analysis to be performed on top of
Hadoop, while YSmart [88] and Hive [89] offer respectively an SQL and an SQL-like
interface to MapReduce.
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2.5.1.2 Other Implicitly Parallel Programming Models
Other programming models with implicit parallelism have been proposed for applica-
tions that cannot be squeezed to fit in the MapReduce paradigm [90] or that cannot
reach satisfying performances [91]. All-Pairs [92] is one of them; this programming
model offers a simple abstraction with implicit parallelism to the classical all-pairs
problem. Spark [93] is a programming model and runtime environment for distributed
memory environments that loads data sets in memory and executes tasks built from a
few specific primitives (map, join, group by, filter, etc.) on them. Because Spark does
not store and load data sets between tasks, it avoids costly disk access and network
latencies in applications that execute multiple tasks on the same data.

Phœnix [94] is a parallel programming model with a message passing semantics that
can accommodate highly dynamic environments, where nodes can join and leave the
computation at any time (also called “node churn”). In Phœnix each physical node
“assumes” (or is responsible for) a set of virtual nodes. A message is sent to the address
of a virtual node and the runtime system takes care of delivering it to the physical node
that assumes it, despite the fact that the physical node that assumes a virtual node can
change at any time. The number of virtual nodes often match the number of partitions
in the input data, so that each virtual node is given a piece of the input data. In that
sense, Phœnix offers a very elegant way of sending messages to data instead of nodes,
erasing concerns of the underlying infrastructure and allowing programmers to focus on
data only.

2.5.2 Programming Models for Graph Processing
Many big data sets, in the field of social networks in particular, are structured as
graphs and programming models need to account for this structure for maximum effi-
ciency. Pregel [95] proposes a programming model for processing arbitrary large graphs,
implicitly parallelizing the tasks on vertices. Like in most other programming model for
large scale processing, fault tolerance is transparent to the programmer. To program
an application with Pregel, one must implement a function that will be called repeat-
edly on the graph’s vertices. The function on each vertex is able to change the state
attached to a vertex and to all its arcs. While the function only has access to a partial
state, Pregel allows messages to be sent to other vertices. The user-defined function is
called in parallel on all the nodes of a cluster with a barrier between iterations and the
computation stops when there is no more work to do on all the vertices. The runtime
system decides how to partition the graph and no explicit parallelism or synchroniza-
tion is required from the programmer. GraphLab [96–98] is another implicitly parallel
programming model for graphs that uses shared memory instead of message passing.
Here “vertex functions” are also applied to edges and unlike in Pregel they have access
to neighbors of the current vertex.

2.5.3 Programming Models for Stream processing
Some applications have to deal with a constant flow of incoming data [99,100] for which
traditional models are not well suited. A stream is an infinite list of bytes indexed
by time; a typical stream processing system contains contains three kinds of modules:
sources inject data asynchronously into the system, sinks remove data from the system;
in-between the sources and the sinks, a series of filters or operatiors, often arranged
in pipeline, apply different treatments to data. A typical application would setup the
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following stages: first, the input data is filtered to keep only the relevant pieces; second,
the filtered data is transformed into a format suitable for processing; third, data is
processed iteratively or incrementally, which is where the actual computation happens;
forth, the result is stored.

Many Data Stream Management Systems (DSMS ) follow this general design [101–
105] for applications in many domains including sensor networks, the Internet of things,
online advertising, log analysis and social networks. The modular design adopted by
most DSMSs also has the advantage of allowing parallelism at multiple levels; each
module can be easily run on a dedicated machine, and still be multi-threaded.

2.5.4 Programming Models for Incremental processing
Incremental processing is a set of techniques that allow a system, when a subset of
input data is updated, to run only the parts of a computation that depend on the input
data that changed. Thus, incremental processing is suited for applications that need to
process the same data set several times, when small pieces of the data set is modified
between computations; this scenario is common in data mining applications or web
crawlers that mostly index the same web corpus over and over, for example.

In this spirit, [106] proposes a continuous bulk processing system that offers abstrac-
tions and primitives for repeated computations on the same input data set. [107] pro-
poses a programming model with special instructions for recording operations to repeat
on the first run, and re-execute them incrementally on the subsequent runs. Variables
that are accessed in successive executions must also be declared with a special type to
let the system compute the correct data dependencies.

Google’s Percolator [108] is a system for distributed incremental processing based
on an observer/notifier paradigm. A set of Percolator workers scan a BigTable [66]
for changed columns and executes trigger-like procedures called “observers” to update
some previously computed results. Presto [109] is a distributed implementation of
the R language [110] packed with incremental features that has a semantic close to
Percolator. Presto uses HBase [67] as a storage backend and allows programs to attach
callbacks to arrays of data (or partitions of an array); when the data rows are updated,
the callback is executed, similar to database triggers. These callbacks are the way to
express incremental programs as they naturally exhibit dependencies between data and
programs.

Solutions for incremental processing sometimes involve modifying an existing system
to make it incremental; this is the case for MapReduce, for which several incremental
implementations have been proposed over the last few years [111,112].

2.5.5 Programing Models for Iterative processing
Iterative processing describes computer programs that run repeatedly, producing a bet-
ter approximate at each iteration. An iterative procedure terminates after a given num-
ber of iterations (usually large enough to ensure convergence) or when the approximate
converges to an estimate up to an acceptable threshold.

Distributing iterative algorithms introduces difficulties due to asynchronicity that
can make otherwise convergent algorithms diverge [113]. As for incremental processing,
programming models and MapReduce in particular have been adapted to reduce the
latency induced by loading and storing the same data set from and to HDFS repeat-
edly [85,86,114,115] while still benefiting from high level abstractions, high throughput
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and effortless fault tolerance. [115] in particular gives an interesting study of MapReduce
parameters that strongly impact iterative jobs.

2.6 Workflow and Dataflow systems
Distributed workflow and dataflow systems allow to build distributed applications from
sequential building blocks. They are often represented as Directed Acyclic Graphs
(DAG) where vertices represent sequential tasks and edges represent the flow of con-
trol—for worflows—or the flow of data—for dataflows.

In the general case, distributed workflow systems take such a DAG as input, compute
task or data dependancies, and attempt to run tasks in parallel when it is possible;
otherwise, they are serialized. This representation is called abstract workflow. From this
abstract representation, workflow and dataflow systems generate a concrete workflow
that maps tasks to machines. Following the trend for implicit parallelism we discussed
before, the translation from abstract to concrete workflows tend to make distributed
execution on heterogeneous and even hybrid infrastructures as transparent to the user
as possible. In addition, the DAG representation allows to perform various scheduling
optimizations beforehand.

This is the case of Swift [116]; Swift is a scripting language where variables encapsu-
late files and data sets and where functions encapsulate commands. Function arguments
are variables and the corresponding data sets or files are implicitly transferred to the
machine where the command is to be executed; Swift computes data dependancies based
on variable assignments in the language and runs function calls in a distributed fashion
to a variety of infrastructures. GEL [117] offers features similar to Swift to the difference
that parallelism must be expressed explicitly.

HTCondor combined with DAGMan [118] takes a concrete DAG as input, compute
task dependencies and schedules the tasks to computer clusters, clouds and desktop
grids. To support desktop grids, the HTCondor meta-scheduler checkpoints tasks, de-
tects failures and restarts tasks on different machines to complete the application.

Pegasus [119] allows to generate an abstract workflow from several high-level APIs.
It applies transformations and optimizations to the graph (for data locality, improving
transfers, adding housekeeping tasks etc.) and uses information about the execution en-
vironment to generate a concrete workflow DAG. This concrete workflow representation
can be fed to HTCondor or other workflow engines for execution.

Swift and HTCondor deal transparently with data transfers between sites, different
scheduling and security policies, allowing users to focus on their application code with
no concern of the actual execution environment. Scientists from many communities that
are not specialists of distributed systems now rely on workflow and dataflow systems
to leverage considerable computing power for their applications. Efficient execution
systems are paramount to efficiently utilize their resources.

Dryad [120] is a dataflow system that requires users to program their distributed
application as a DAG where vertices are encapsulated programs and where edges are
communication channels. Dryad offers interesting features for very small to large clus-
ters; while the DAG model obligates users to think about parallelism, the runtime
system takes care of mapping vertices to resources, actually running processes and set-
ting up the communication channels. These channels are hidden by a generic API
that transparently implement files, FIFO or network communications based on locality.
While programming algorithms is more complicated, the runtime system aims at being
as simple to use as MapReduce [80], with transparent fault tolerance, .
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2.7 Data Provenance
Data provenance—that comes also with the name “lineage” or “pedigree”—constitutes
the complete history of derivations and treatments throughout the life of data; as an
essential tool to preserve the quality of scientific data assets over time, it has gained
significant interest in the e-science community [121, 122]. To answer the simple ques-
tion “How was produced this piece of data?”, provenance information must comprise
fine grain documentation about processes (when and where they ran, what arguments
they were given, what was their environment), tools (their version and the version of
the libraries used, their compiler, compilation options) and input data (what instru-
ment, tools and process generated them). This necessitates specific provenance archi-
tectures able to capture, store and query a lot of information provided by scientific
workflows (either workflow systems or human manipulations sometimes called “human
workflow”) [123].

2.7.1 Open Provenance Model
The Open Provenance Model (OPM) is the first attempt at producing a generic model
for provenance. The interest for the model drove rapid evolution during the last 7
years [124–126]. The model defines ways to represent provenance and query provenance
information. The model was designed to be generic enough to not only benefit the
computer science community and represent the provenance of anything.

The OPM defines data items as immutable “artifacts” and operations on artifacts
as “processes” [127]. In this definition, processes consume artifacts to produce new
artifacts in a certain environment defined by “agents”. Defining all the entities of these
three groups and causality relations between them is the difficult part of provenance
reconstruction.

The OPM is used as an interface for interoperability, allowing provenance infor-
mation to be shared and queried between systems [128]. Several methodologies [129]
and examples [130, 131] of how to implement the Open Provenance Model in existing
systems are now available in the literature, making it currently the best candidate for
storing and exchanging provenance in the future.

2.7.2 Provenance Systems
A first ad-hoc solution is to store provenance information as metadata in the data
files. While this has the advantage of working for systems that are not provenance
enabled —like a traditional filesystem—it can hardly be efficient because provenance
information often grows larger than the data it refers to [121]. This approach has been
applied to relational databases where extra provenance fields are added to database
schemas [132]. This option quickly reached important limitations that motivated the
need for specialized databases that would only store and query provenance information
only.

This idea evolved into dedicating relational databases to provenance only, and more
specialized provenance databases. While they are numerous, most, of them are part of
larger systems that include specific provenance representations, acquisition techniques,
specialized query languages and visualization tools.

myGrid [133], for example, is a set of web services, tools and abstractions for bioin-
formatics experiments on the grid. It features services for executing workflows using
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Taverna [134], distributed queries and a data repository called mIR. mIR is a service
central to myGrid in that it not only store data sets but also stores provenance informa-
tion recorded automatically by the other services, including Taverna. Taverna records
information about individual tasks and their input and output data, and stores it in
a dedicated Apache Derby [135] relational database. Taverna can export provenance
into a subset of the OPM and into the Janus [136] format which is part of the myGrid
project and allows third party components to add annotation to provenance entities.

PASOA [137, 138] is a framework for provenance that defines “actors” (users and
human workflows or a workflow system), “processes” that are executed by users and
“interactions”. In this model actors are responsible for recording information about pro-
cesses (Process Documentation) in the form of assertions. Assertions can have three
types; “actor state assertions” document the state of actors at the time an interaction
took place; “interaction assertions” document what data was exchanged during the in-
teraction; “relationships” documents interactions between actors and how they produced
data. Low-level query interfaces are provided to construct querying applications able
to answer assertions questioned by users.

Karma [139] is system for collecting and managing provenance information from
various workflow systems. It stores provenance information in a relational database
and can export provenance in a way that complies with the Open Provenance Model.
However, its 2-level model is more detailed than the OPM. The “registry” level is an
abstract representation of processes, services and data consumed and produced by them.
The “execution” level represents instantiations of a registry-level model, i.e. a concrete
workflow execution. Once the registry model defines how services interact, consume
and produce data, Karma is able to capture provenance information with no a-priori
knowledge of the execution model. In addition, Karma is not tied to a particular
workflow system.

Chimera [140] proposes a Virtual Data System (VDS) that describes three types of
entities: a transformation is an arbitrary executable; a derivations represents the exe-
cution of a transformation; a data object is the input or the output of a derivation. The
VDS is implemented by a Virtual Data Catalog (VDC) that is controlled and queried
by a Virtual Data Language (VDL). The VDL allows to describe before execution how
a data object should be produced and after execution how it can been produced again.
A query to the Virtual Data Catalog then serves data objects directly if present, or
simply regenerates them otherwise.

2.7.3 Automated Provenance Collection
Provenance recording implies that all actors (the user, the workflow system and ap-
plications) participate in the collection of provenance information, agree on a common
format and on some parameters, like granularity. Automatic provenance collection is the
approach that removes users from the process and attempt to do the collection trans-
parently, eliminating as much human errors (through user manipulations and developer
errors and poor decisions) as possible [141].

The approach undertaken by the Provenance Aware Storage System (PASS ) is to
record provenance directly at the operating system level; in [142] Muniswamy-Reddy
et al. propose a novel storage system that plugs on the Linux kernel to automatically
and transparently collect provenance as applications and users issue commands. PASS
is thus able to capture the binary path, version, command line arguments, environment
variables and more of the process that produced a file. The proximity between the
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provenance storage and the data storage has the additional benefit of limiting the risks
of introducing inconsistencies that can occur when a provenance database is not notified
of changes to one or several copies of a file.

2.7.4 Collaborative Data Science
Collaborative Data Science is a wider movement that aims at open sourcing and sharing
scientific data sets to increase collaboration and public access to information. There
are two faces to this trend; first, scientists in many fields that are willing to share the
data sets and detailed processes that led to the results they publish in research articles;
second, governments of more and more countries like the US [143] and France [144]
follow the Open Data initiative by making freely available finance, business, climate,
health and more data sets for the sake of transparency.

Collaborative Data Science and Open Data thus naturally encompass the problem
of provenance, as the first action users of a publicly available data set take is to check
whether it fits their purpose and meet the quality standards they need. Several plat-
forms have emerged, often available as Software as a Service like Sense [145] that offers
a complete integrated workbench for storing large data sets, prototyping data analysis
workflows interactively and reproduce them simply. DataHub [146,147] offers advanced
storage features like versioning of large data sets with a large number of files and query-
ing that accounts for data sets structure and versions.

In the scientific world, a lot of attention is invested into increasing the value of
data sets through reuse and collaboration. Currently no system offers the possibility of
linking scientific publications to data sets for experimental reproducibility.

2.8 Data Life Cycle Management
There have been few works around the concept of Data Life Cycle to improve the man-
agement of e-infrastructures. In [148], the authors introduce a model for Scientific Data
Lifecycle Management (SDLM), which is a generic description of the different stages
and processing steps for scientific data sets when handled by e-science infrastructures.
In [149], authors introduce the concept of Grid Data Life Cycle (GDLC), and propose
a system (also called Active Data) to track how the data are computed across multiple
Grid systems so that data can be transparently recreated when needed during execu-
tion. FRIEDA [150] leverages the data life cycle concept to provide descriptions of
application-specific storage requirements and use this information for storage planning
and data deployment on Cloud infrastructures.

2.9 Discussion
This review of the literature offers a broad view of past and current works contributing to
the exploitation of big data sets. Both computing infrastructures and software have been
adapted and are still evolving to address growing volumes of data. Consequently, one
can see a future where storing, moving, filtering and storing data sets only will become
more challenging. We dub these operations Data Life Cycle Management (DLCM),
predicting that it will be a strong limiting factor for data-intensive science in the short
term. This section explains the relation and impact of infrastructures and software on
Data Life Cycle.
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2.9.1 Difficulties Coming from Applications
Data storage and management systems elaborate strategies to provide end users with
abstractions that fade infrastructure details away. Typically, users see a flat logical
view of data sets when they are in fact highly distributed and replicated in remote
data centers. Different software have different logic for providing these abstractions,
and orchestrating transfers between them can require fragile ad-hoc scripts. On top
of this, users do not necessarily have a choice over which software to use; they may
have to incorporate software used by a collaborating research group; they might also
depend on legacy code that cannot be changed at a reasonable cost. As the number of
systems increases in an application, it gets harder for humans to comprehend the whole
system and supervise data life cycle management. This is more true for data intensive
applications because of the additional difficulty of adapting data sets to the specific
requirements of individual systems that were not designed to cooperate. Performing
simple manual tasks in such environments can become incredibly difficult for users
because the actual layout, location, distribution and even the actual bytes of their data
are most of the time miles away from the view they get, and from what they can see.

These applications can currently be modeled in several ways, and making this model
is often the starting point of a workflow or dataflow project: applications are described
as graphs where vertices represent tasks and edges represent control or data passing
from a task to the next. This representation that focuses on tasks and in which data is
simply bound to edges on a graph is too coarse and does not contain enough information
for a variety of use-cases. This is the case for incremental applications and applications
featuring non trivial data movements between tasks, for example when replication is
used. Users wanting to optimize the coordination between tasks in such applications
need a finer level of details about data operations that is not offered by traditional
models.

2.9.2 Difficulties Coming from the Infrastructures
Adding to the difficulty coming from applications, hybrid infrastructures create their
own share of difficulty in data life cycle management. When managing large data sets on
hybrid infrastructures, one has to deal with multiple things that depend on node, storage
and network properties; the heterogeneity of these resources implies that performance
and fault models can all differ from one node to the other. So again, implementing
simple data life cycle operations like transfers or copies require a lot of code that is
specific to particular situations. Data distribution and replication, storage and transfer
of intermediate results, unexpected errors and events are amongst the things that are
naturally part of the data life cycle, but require more attention on hybrid infrastructures.
For example, accessing two copies of the same file on two infrastructures can be very
different regarding software and interfaces, security policies and latency, despite all
nodes appearing identical.

2.9.3 Error Detection and Recovery
When many nodes, disks and processes are involved in a computation, the number of
events happening at the same time can be huge; in the mass of things that go right,
the small things that go wrong can be hard to catch. Because workflow and dataflow
systems orchestrate task executions, errors are only detected when a task fail. That is,
a process can leave data in an incorrect state completely undetected as long as it does
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not fail completely, i.e. as long as it returns 0. DLCM operations are subject to these
small silent failures: for example, only a fraction of faulty file transfers can be enough
to corrupt a data set and invalidate a whole experiment. Unlike workflow and dataflow
DAG models that assemble tasks, a finer representation of applications that focus on
data at a finer grain could specify the expected state of data at key points. A system
implementing such a fine grain specification could detect errors earlier and save time
and resources.

Once errors are detected, the difficulty of exploring several infrastructures and sys-
tem makes recovery challenging or nearly impossible, forcing the user to step-in and
fix the problem manually. As a general rule, there is also a lot of “human workflow”
in place for managing the data life cycle: the user launches certain processes manually
at key points because they are difficult to automate. These actions, e.g. launching the
workflow system when input data become available, cannot be automated by a workflow
system. These manual data life cycle operations should be avoided as much as possible;
not only are they suboptimal in the way they tend to introduce a delay between the
moment when an action could be performed and the moment it is performed, they are
also prone to errors.

2.9.4 Optimal Usage of Hybrid Infrastructures
Data intensive applications cannot achieve top performance and resource usage on hy-
brid infrastructures without an important flow of information between both. Currently,
data life cycle management decisions, like how to distribute data and workloads amongst
the infrastructures, are made by users; in the same spirit, conflicts and errors are solved
manually by users. However, the reason for this is not because humans are better at
it, but because these tasks are nearly impossible to automate. To program the data
life cycle operations humans usually do, a computer system should have the same high-
level and exhaustive view of the whole application. Such a model does not exist at this
time; it would need to represent fine grain data operations, with links to systems and
infrastructures clearly shown. Only then could programs make DLCM decisions and
take actions that used to be humans’.

2.10 Objectives for this Thesis
From this study of the literature, I now define the data sets and the infrastructures that
will be considered in this thesis. Then, I present the objectives for this thesis.

2.10.1 Data Sets and Infrastructures Considered in this
Thesis

Characterization of Data Sets In this thesis, we consider data sets that originate
from science and the industry with a particular focus on large and collaborative scien-
tific data sets. From the science community, we consider data sets acquired by scientific
instruments, simulation, sensor networks or the result scientific experiments in all do-
mains, e.g. physics, biology, computer science or the humanities; from the industry,
we consider data sets coming from social networks and ubiquitous devices, continuous
streams of customer-produced data, online advertising and content delivery networks.
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Considering that data sets must not necessarily be very large to be challenging to
manage, we do not define a lower bound on their size. However, we consider data sets
that are dynamic. They may grow or shrink in size continuously or occasionally, they
can be transformed, derived, partially modified or unexpectedly altered. They are either
too big to fit on a single storage node or need to be distributed for availability (serving
queries in a decent time) or computation (dividing analysis between several machines).
Finally, we consider data sets that are shared: even long after they have been exploited,
others might still need a data set and the associated metadata. Several research groups
may also be working with copies of the same data at the same time and want to share
results with the world.

Characterization of Distributed Infrastructures For managing the type of data
sets we have defined, we consider infrastructures ranging from a network of low-powered
and low-CPU sensor devices to large high-performance platforms. Our infrastructures
may be a a cluster, a grid, a cloud, a desktop grid, or an hybrid composition of them.

As such, the solutions we propose must be able to work with any of these infras-
tructures and with all at the same time. We describe here some of the properties of this
hybrid infrastructure:

Heterogeneity in hardware (nodes, network, storage), software (batch scheduler, op-
erating systems, available storage systems), performance (CPU, disk and net-
work latency), fault models (stable grid resources, volatile cloud and volunteer
resources) and administration policies (security, access to resources);

Geographic Distribution of computing sites over arbitrarily long distances, obligat-
ing data management systems to cope with different latencies, making synchronic-
ity challenging if not impossible.

To accommodate this model of infrastructure, we level down most of their properties,
considering an infrastructure with a high latency network and nodes that can leave and
join at any time. Nodes are expected to have low computational power, like sensor nodes
or mobile devices. Nodes can be behind a firewall or a NAT, complicating peer-to-peer
communications.

2.10.2 Objectives for this Thesis
We express the goal of providing a novel data life cycle management system that will
overcome the difficulties presented above, and make distributed data life cycle manage-
ment easier and more reliable. To this end, we define several sub-objectives for this
thesis:

Formalization We need a model to formalize the life cycle of distributed data in data-
intensive applications. The model must allow to represent fine grain interactions
between processes and data sets, answering the question “what is the effect of a
process on data?”.

Automation and programing Our DLCM must automate as much things as possi-
ble, from launching processes to recovering from errors. It must offer a simple and
powerful way to express DLCM operations without infrastructure concerns.

Coordination Our DLCM system must offer users and applications a way to react to
data events to optimize their coordination, even when events occur outside their
own scope.
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Support of legacy software Because it is not always possible to change existing
code, our DLCM system must integrate legacy software just like new dedicated
software, without requiring code modifications.

Collaboration Our DLCM system must help researchers keeping track of the origin
and the destination of their data when they are shared with collaborators. Sharing
data sets must be automated to guarantee the quality of data and their immediate
availability.

2.11 Conclusions
In this chapter we have presented the state of the art in infrastructures and software
that support data intensive distributed applications. We have identified Data Life Cycle
Management as a key issue for optimal support of large distributed data sets on hybrid
infrastructures.

This thesis proposes a novel system for data life cycle management that has two
angles; the first angle is formal, and aims at providing a model for, representing and
specifying DLCM; the second angle is practical, and develops a programing model for
automating data management tasks, increasing collaboration between heterogeneous
systems. The resulting system, called Active Data, is thoroughly described in the next
chapter.
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3
Active Data

Active Data is the main contribution of this thesis; it offers a rigorous model for
specifying and programming distributed data management on heterogeneous
infrastructures. In this chapter, we first analyze essential aspects of distributed

data-intensive applications and determine what features and elements need to be mod-
eled in order to capture essential aspects of distributed data. Based on this analysis,
we propose and thoroughly describe a meta model for representing the life cycle of
distributed data. We present a prototype implementation for the meta model and the
Active Data programming model and runtime environment.

3.1 Representing the Life Cycle of Distributed Data
3.1.1 Generalities on Distributed Data Life Cycles
In this subsection we analyze common patterns observed in data management systems.
From our observation, we extract elements that a meta model for data life cycles must
support.

3.1.1.1 Data and Life Cycle: Definitions
Before defining and characterizing data life cycles, we need to define what “data” means
to us. In this work, we call data item an atomic piece of information stored in a computer
system. Here “atomic” is relative to said system: on a disk this usually corresponds to
a block, when on a file system, it is more likely to be a file. According to this definition,
a data item can be, including but not limited to, a file, a storage block, a tuple in a
database or an in memory record. A data item does not contain metadata, which we
consider to be stored aside. As such, a data item may be empty —in which case we say
it has no payload— and still have metadata describing it.

Acquisition Preprocessing Transfer Analysis Store result

process.sh

Figure 3.1: Sequential data life cycle represented as a chain of tasks coordinated by a
shell script.
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Between the creation of a data item and its deletion, many operations that change
its payload are applied. For example, consider the process on Figure 3.1 where sev-
eral successive treatments are applied to a data item; we call tasks these operations
represented by boxes; implicitly, tasks create data stages (see Definition 1).

Definition 1 A data stage is a step in which a data item pass between its creation
and its deletion. A data item is pushed from one stage to the next by a tasks, i.e. an
operation that alters it.

However, each task can push a data item more than one stage further; this is illus-
trated by Figure 3.2 that features three different stages (“Extract metadata”, “Filter”
and “Annotate”) for the “Preprocessing” task. This means that looking at software and
service interfaces only may often not be enough to capture important data stages at a
satisfying fine grain.

Acquisition Preprocessing Transfer Analysis Store result

Extract metadata Filter Annotate

Figure 3.2: The relation between task and state is not one-to-one: a single task usually
encapsulate several meaningful operations in regard to the data life cycle.

Definition 2 gives a first definition of data life cycle that relates to tasks, as data
items are pushed from one stage to the next by tasks and stages. Examples of tasks
include acquisition, replication, transfer, deletion, archiving etc. It also defines the
life cycle of a data item as its history : what the life cycle contains is everything that
happened to the data item so far.

Definition 2 The life cycle of a data item is the succession of operational stages that
a data item has been through since its creation.

We call Data Management Systems computer systems that participate in the life
cycle of data. Data management systems store, transfer, index and query data, they
perform necessary maintenance operations prior to processing and execute processing
tasks. A large distributed application involves several data management systems, each
performing one or several tasks. For example, a system stores and index data, and
another system performs the analysis.

Additionally, data management systems often organize data items into larger sets
called “data sets” that allow users and programs to apply batch processing to many data
items with a single request, hence making operations simpler for users.

Definition 3 A data set is a collection of data items in a system that share some
property, like their origin or function. Data sets provide a logical view of data items
that can be physically distant.

A data set is said to be distributed whenever or its storage or processing requires it
to be split in smaller units that are handled by different machines.
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Acquisition Preprocessing

Transfer

Transfer

Split Distribution

Analysis

Analysis

Store result

Store result

Analysis Store result

bootstrap.sh

process_a.sh

process_a-b.sh

process_a-a.sh

process_b.sh

Figure 3.3: Parallel life cycle represented as a tree of tasks. Each local process is
coordinated by a specific shell script (represented by a frame) responsible for local task
execution and spawning remote processes.

Data management tasks are typically executed sequentially, by different programs,
under the supervision of a runtime system; this system can range from a simple ad-hoc
script to a more complex workflow system. Figure 3.1 gave a first example of a simple
workflow composed of tasks (“acquisition”, “preprocessing” etc.) represented by boxes,
that can be orchestrated by a single script. In the case of distributed data, some of
the tasks happen in parallel, and thus the succession of tasks (workflow) is not a chain
anymore. This last point is illustrated by Figure 3.3. The figure has two branches
(“Preprocessing” and “Distribution”); the two scripts after each branch are executed in
parallel.

3.1.1.2 Data state
We just stated that users use scripts or workflow-like systems to orchestrate the various
tasks their experiments comprise. In terms of life cycle, we stated that a task may imply
several data stages. So each task pushes data items one or several stages further and,
at any time, the current stage is what we call the state of the data item.

Following on this definition, we distinguish two kinds of states in data life cycle; a
first set of states comes from the tasks: for example, on Figure 3.1, if task “Transfer” has
returned, but not “Analysis”, the state of the data item is implicitly “Being analyzed”.
A second set of states comes from inside the tasks: the current state of a data item
being treated by a task depends on what internal stages it has passed yet.

Furthermore, we distinguish two kinds of states:

Explicit states: the state is explicitly coded (e.g. stored along metadata) for every
data item in the system, whether exposed to users or not. The set of possible
data states can be extracted directly from the code or documentation;

Implicit states: the state is not explicitly coded, but the sequence of operations ap-
plied to data items can be extracted from the code or documentation and trans-
lated into states.

3.1.1.3 Distributed Data States
The observations above fit a sequential life cycle as described in Subsection 3.1.1.1;
however, the definition of state is not sufficient to describe the state of data when
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Acquisition Preprocessing Transfer Analysis Store result

process.sh

(a) On a single thread, the state im-
plies that the data item went through
all the previous tasks.

Acquisition Preprocessing

Transfer

Transfer

Split Distribution

Analysis

Analysis

Store result

Store result

Analysis Store result

bootstrap.sh

process_a.sh

process_a-b.sh

process_a-a.sh

process_b.sh

(b) Each branch represents a different thread. The
state of the distributed data item is the conjunction
of all the individual states.

Figure 3.4: Illustration of the state of a data item deduced from the current processing
task. The state of a distributed life cycle, compared to a sequential one, requires a
slightly more complex definition.

distributed. Since several replicas are present simultaneously in different systems, each
replica in its own system has its own state. Figure 3.4 represents visually the state of a
data item in two different workflows. On Figure 3.4a, the data item has a single copy;
it passed “Acquisition” and its state is marked in blue: it is being preprocessed. On
Figure 3.4b, 5 replicas of the same data item exist at the same time. The state of each
replica is marked in blue as well. Thus, the question we need to answer is “What is the
complete state of a distributed data item?”. We answer this question by asserting that
the state of distributed a distributed data item is also distributed (Definition 4).

Definition 4 The state of a data item distributed in several systems is the set of all
the individual local states of the replicas.

3.1.1.4 Data Identifiers
Earlier we defined what “data” means in this work. Data management systems, storage
systems and analysis tools need a way to identify data items—or discriminate them.
Systems satisfy this need by assigning a unique identifier to each item they manage.
Later, when the system needs to apply some treatment to a specific data item, it use
its identifier to reference the targeted item. Data management systems use a variety
of conventions for data identifiers; for example iRODS [68] assigns a property named
R_DATA_ID of type Long to each file; HDFS [45] refers to files using URIs; database
records are retrieved with a reference to the database, a reference to the table and the
identifier of targeted tuple (typically an auto-incremented integer).

Because of this variety, Definition 5 does not restrict a type for data identifiers and
refers to words instead. Later, this identifier is often abbreviated as “UID”.

Definition 5 The data identifier is the word that uniquely identifies a data item in a
given system.

3.1.1.5 Data Replication
In addition to simply performing tasks concurrently, data management systems use
replication for various reasons including load balancing, fault tolerance and perfor-
mance optimization. For example, HDFS stores by default three copies of each file; two
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copies are placed in the same rack, and the third in a different rack. In addition to
discriminating different data items, systems that use replication must discriminate the
several replicas of the same data item.

These systems typically hold two identifiers for the data they manage: one is what
we previously defined as data identifier and is the same for all replicas; we call the other
identifier replica identifier and it is different for all replicas of the same data.

It is also observed that the data identifier is commonly exposed to the user; it is
generally the reference they need to address their data. However the replica identifier
is most often hidden by the system because users do not need it: when the system
receives a request to perform an operation on data, it decides what replica is used with
no user intervention. The level of replication (the number of replica for a data item) is
also often hidden from the user and may vary under various circumstances. Definition 6
defines the replica identifier that we sometimes refer to as “RID”.

Definition 6 The replica identifier is the word that discriminates a replica of a single
data item from all the other replicas of the same data item.

Also note that in most systems, data identifier must not be confused with the notion
of data name. When the identifier is by definition immutable, the name—that is often
used by users to refer to a particular data item or file—can change. For this reason,
systems often hide data identifiers and map them to names that are exposed. This notion
is bound to “logical address” vs. “physical address”. In many systems using replication,
the true location of an item accessed by users is hidden behind a logical—or virtual—
address. When a logical address is used, the system redirects it transparently to one of
many physical addresses without exposing it.

3.1.1.6 State Transition
Now that we defined data states, let us focus on how data management systems change
the state of a data item over time.

Consider the sequence of operations applied to a data item on a single thread; since
states are deduced from tasks, the change from one state to the next is determined by
the thread’s control flow—arcs in our current representation. In other words, when a
task completes for a data item, the state of the item is changed to reflect the situation.
For example, when a task named “Filter” returns, the state of the corresponding data
item goes from “Unfiltered” to “Filtered”.

What task can be executed after a completed task—and therefor what state can
follow an assigned state—can be determined beforehand by the program tasks and pos-
sible paths; we use the generic expression “state transition” (or simply “transition”) to
designate a possible change of state in the course of a life cycle.

So far, on our visual representations, states are deduced from tasks, and changes of
state are made by tasks. Hence each box seems to fit both purposes and bring confusion.
For this reason, we decide that a life cycle model must make a clear distinction between
states and state transitions; as such, we give a first definition of transition.

Definition 7 A state transition is an operation on a data item that changes its state,
either distributed or not.

Definition 7 defines state transitions and clearly separates states and transitions in
a data-centric fashion: a operation that does not update the state of a data item is not
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a transition, and needs not be represented on the data life cycle. A task is composed of
one or several transitions, one for each operation that updates the state of a data item.

In this subsection we have introduced three main components of distributed data
management systems: data items and their assigned unique identifier, data states and
data transitions.

The traditional view centered on tasks is not sufficient to express the complexity of
data life cycles. A model for data states and transitions must show that at any time,
a data item can have several states, and that several transition may be occurring. The
next subsection introduce the result of our reflexion, that is a meta-model suitable for
distributed data life cycles.

3.1.2 Life Cycle Meta-Model
Informally, the life cycle model of a data item is the set of all the states it can have at
any time, and the set of transitions that dictate what changes of state are possible.

We find in Petri Networks [151] a suitable starting point for our meta-model as they
clearly present states and transition. They naturally expose [152] distributed states and
expose concurrency graphically, enabling to simply describe complex systems. As such,
Petri Networks have been used for describing and analyzing parallel and distributed
applications for a long time [153,154].

In this section we present how Petri Networks are used and extended to meet our
data centric requirements.

3.1.2.1 Petri Networks
A Petri Net is classically a 5-tuple PN = (P, T, F,W,M0) where:

• P = {p1, p2, . . . , pm} is a finite set of places represented by circles;

• T = {t1, t2, . . . , tn} is a finite set of transitions represented by rectangles;

• F ⊆ (P × T ) ∪ (T × P ) is a set of oriented arcs between places and transitions
and between transitions and places;

• Places in a Petri Net may contain tokens represented by •;

• W : F → N+ is a weight function which indicates how many tokens every transi-
tion consumes and how many tokens it produces;

• M0 : P → N is a function that indicates the initial marking of places.

A transition t ∈ T is enabled if and only if for any place p as {p ∈ P | (p, t) ∈ F},
the number of tokens in p is greater or equal to w(p, t), the weight of the arc between
p and t. If the weight is 1, w is generally omitted in the visual representation.

In addition, our definition allows an extension of Petri Networks: inhibitor arcs.
When a transition is connected to a place by an inhibitor arc, the transition is disabled
whenever the place contains at least one token.

In our meta-model, a Petri Network represents the life cycle model for data in a
single system. Petri Net places represent all the possible states of data items in the
system, and Petri Net transitions all the operations that initiate a change of state.
Tokens represent replication: a token is a single replica, and the place it is on represents
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the current state of the replica. The marking or configuration of a Petri Network is the
way tokens are distributed over the places at a given time. As such, and according to
Definition 4, the state of a data item matches the marking on its Petri Network.

3.1.2.2 Definitions

Created t1 Terminated

Figure 3.5: Graphical representation of a minimal life cycle model, composed of two
places (Created and Terminated) and a single transition t1.

We now formally define our life cycle meta-model by extending Petri Networks.

Definition 8 A data life cycle model is a 6-tuple LC = (P, T ∪ T ′, F ∪ F ′, G,W,M0)
which represent respectively a set of places, transitions, arcs, inhibitor arcs, a weight
function and an initial marking.

P , T and F represent the data life cycle as exposed by the data management system. P
contains at least the two following places: Created ∈ P is the start place, representing
the creation state of the data item; Terminated ∈ P is the end place, representing
the state of the data after it has been permanently deleted. In addition, Terminated
is a sink:

∀t ∈ T, @(p, t) ∈ (P × T ) | p = Terminated (3.1)

When a life cycle starts, the corresponding data item has only one replica on the
Created place. So the function M0 is defined as:

M0(p) =

{
1 if p = Created
0 if p ∈ P \ {Created} (3.2)

T ′, F ′ and G are not part of the actual data life cycle as exposed by the data
management system. Instead they are sets of transitions and arcs added to the model
to ensure properties that we discuss later in this section. We decide to neither represent
them graphically nor to expose them to users.

As a minimal example, Figure 3.5 presents the life cycle model of a newly created
data item. The token present on the place Created means that no operation has
yet been performed on the corresponding data item. The single possible action is
represented by transition t1 and moves the token to the Terminated place.

3.1.2.3 Data Identification and Replication
Packed with elements from Petri Networks, our life cycle model is now able to represent
data states, transitions, and replication. However, we need a way to discriminate tokens
and assign them the two identifiers discussed in subsections 3.1.1.4 and 3.1.1.5: the data
identifier and the replica identifier.

Let δ be a data item; δ(id, i, p) identifies a replica —or token— of δ, where id is the
data identifier, i is the replica identifier and p ∈ P is a place. This implies that several
data replicas may be in different states a any given time, as required.

We guarantee the consistency of the meta-model by maintaining the following prop-
erties, for δ(id, i, p) and δ′(id′, i′, p′) two replicas of δ:
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Property 1 id = id′ iff δ = δ′

Property 2 ∀ id @ δ(id, i, p), δ′(id, i′, p′) | i = i′

Equation 3.2 specifies that each instance of a life cycle model has a single token, i.e.
a data life cycle starts with a single replica. To create additional data replicas, we use a
transition that produces more tokens than it consumes, such as the self-loop presented
in Figure 3.6. When t1 is fired, it consumes a single token from place p1; because the
weight of the outgoing arc from t1 is 2, two tokens are produced on place p1. Transition
t1 represents the operation that attributes an identifier to the new token, based on
the identifier of the old token, applying the following rule that ensures Property 1 and
Property 2:

δ′(id, i+ 1, p)

In the course of a life cycle, replicas can be deleted without ending the whole life
cycle. We represent the deletion of a replicas by removing the corresponding token from
the Petri Network with a transition that produces less tokens than it consumes. On
Figure 3.6, transition t2 consumes one token and produces none (it has no outgoing
arc). Thus firing it effectively removes a token from p1.

p1 t1
1

2

t2

1

Figure 3.6: Creation and deletion of data replicas. t1 creates a new replicas and t2
deletes one.

To maintain an strong link between a model and the reality it represents, we decide
that the data identifier id attached to each token will always reflect the real-life identifier
of the data item they represent.

3.1.2.4 Data Life Cycle Termination
We described how to delete data replicas in the previous subsection. However, we also
need to represent the termination of a data life cycle, i.e. when the corresponding data
item permanently leaves the system. This situation is difficult to deal with in essence
because of lingering references to deleted data that can persist in large distributed
systems.

Strongly formalizing termination allows automatic constructions —like life cycle
composition, see Subsection 3.1.2.5— and representing the complete deletion of a data
item distributed on several systems.

On one system, the end of a life cycle is represented in the life cycle model with
a token on the Terminated place (see Figure 3.5). After that, no operation can be
performed on the data item, and as such no token can move in the corresponding model
anymore.

G, a set of inhibitor arcs, prevents all the transitions to be fired with any token.
Every transition in T is connected to the Terminated place with an inhibitor arc in
G:

∀t ∈ T, ∃(Terminated, t) ∈ G (3.3)
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t1

t2
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Model A Model B

Figure 3.7: Example of life cycle model composition: a token in model A can be con-
sumed by tc on start place p1 in order to start a life cycle in B; an other token can be
consumed on place p2 by tt to stop the life cycle in B. Both life cycle models are valid
on their own.

At this point, our meta-model has every element to represent the end-to-end life
cycle of any data item in any system. The last missing feature is the ability to combine
the resulting models as one, in order to represent data that traverse several systems
throughout their life cycle.

3.1.2.5 Life Cycle Composition
Until now, our meta-model only allows to represent the life cycle of data in a single
system. However, as discussed at the beginning of this chapter, most distributed ap-
plications involve several systems. In order to represent the complete life cycle of data,
from end to end, we must be able to represent how data travels from a system to the
other, and how data can be present in several systems at the same time.

When constructing a single large model including the places and transitions of all the
systems used in a data management workflow would have worked, we decide to provide
a way of connecting several life cycle models into one. This provides more reusability as
system developers can distribute the life cycle model of their system and let end users
assemble them as they need.

Let us consider two different systems that are unrelated, at the exception that they
are used by the same user application. Informally, we represent a data item passing
from the origin system to the destination system as the origin Petri Network creating a
token for the destination Petri Network.

Formal definition We give a formal definition for the composition of two life cycle
models that ensures that the composition of a life cycle model remains a life cycle model.
Figure 3.7 features a first example of composition.

Definition 9 We define that the data life cycle model A = (PA, TA, FA, GA,WA,MA0),
composed with the data life cycle model B = (PB, TB, FB, GB,WB,MB0) is the data life
cycle model LA,B = (P, T, F,G,W,M0) where:

• P = PA ∪ PB

• T = TA ∪ TB ∪ Tc(A,B) ∪ Tt(A,B)

• F = FA ∪ FB ∪ F (A,B)

• G = GA ∪GB
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Model A Model B

Figure 3.8: Example of life cycle model composition: any of the three composition
transitions (in red) can create a new life cycle in B from a life cycle in A. The choice
of which composition transition is used to create the new life cycle can be meaningful
in applications.

Tc(A,B) is the set of composition transitions that link places in A to the Created
place of B. Tt(A,B) is the set of termination transitions that link places in A to the
Terminated place of B.

We note Start(A,B) ∈ P the set of start places from A to B, the set of places in
A that are the input of a composition transition to B. Conversely, Stop(A,B) ∈ P is
the set of stop places that are input of a termination transition to B.

F (A,B) is the set of arcs that connect composition transitions and termination tran-
sitions to places of A and B. A composition transition is connected to its source place
by a double-ended arc, acting as two arcs pointing in opposite directions.

Definition 9 allows several places in Start(A,B) and Stop(A,B), so system devel-
opers can represent several entry points from system A to system B, as illustrated by
Figure 3.8. In addition, the use of double-ended arcs allows tokens consumed by a
composition transition to remain on the source place; this aspect reflects the fact that
when a data item is inserted into a new system, is does not necessarily disappear from
the source system.

Definition 10 We say that a life cycle model A is composed with another life cycle
model B iff Tc(A,B) 6= ∅∧∀t ∈ Tc(A,B) ∃ {(p, t), (t, CreatedB)} ∈ F (A,B)2 | p ∈ PA.

Definition 10 formalizes vocabulary commonly used later in this dissertation and in
other works. It states that the expression “A is composed with B” means that there is
at least a composition transition between A and B.

Composition and Token Identification According to definition given in subsec-
tion 3.1.2.3, the token —that we note δ(id, i, p)— created in the destination model is
constructed from a token consumed in the source model. The data identifier assigned
to the new token is the same as the existing token and is identical to the real-life data
identifier; the replica identifier is incremented by one relative to the existing token; the
new token’s place is the Created place of the destination model. To satisfy the two
constraints on data identifiers, the first member of the triplet δ(id, replica id, p) is actu-
ally a set of identifiers. Figure 3.9 illustrates how the set of identifiers is maintained in
both the already existing and the newly created token when a composition takes place.

This way of identifying tokens also offers a strong link between copies of the same
data distributed in non-cooperative systems. A large part of the life cycle of data a



3.1. Representing the Life Cycle of Distributed Data 37

P1

{1234, 1, A.P1}
Createdtc

P1

{{1234, abcd}, 1, A.P1}
Created

{{1234, abcd}, 2, B.Created}
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Figure 3.9: Composition process: the figure presents the state of a portion of life cycle
model around a composition transition. Before the composition transition is triggered
(1.), a token is present on the transition’s source place (P1); after the transition is trig-
gered (2.), a new token is present on the destination place of the composition transition
and shares the same data identifier as the old token. The identifier is a set containing
the real-life identifiers of the data items they represent.

system manipulates happens outside its scope. Thus, visualizing the whole life cycle is
nearly impossible without a reconciliation system like this one.

3.1.2.6 Token Tags and Typed Transitions
The last subsection described how we link replicas of the same data item distributed
in different non-cooperative system; life cycle composition now allows tokens from a
model to be injected in another model. We can leverage this mechanism to pass more
information from a model to the other by attaching information to tokens, in a similar
way as Colored Petri Networks.

In this subsection, we describe token tags and typed transitions, and we discuss the
advantages of this approach with several angles: loading more information to the life
cycle models, representing data collections and passing information from a system to
the other.

Token tags Each token in a life cycle model can be attached zero, one or more tags.
A tag is similar to a Petri Network color with two exceptions:

• places are not restricted regarding what tags they can contain;

• the set of all possible tags is not finite.

Definition 11 We note tags(δ) the set of tags attached to token δ. At creation time of
data (δ), tags(δ) = ∅.

Definition 11 states that tokens start their life cycle with no tag at all. Tags are
attached and removed from tokens by transitions. As such we extend the definition of
tokens, and refine the definition of transitions given in Definition 7.

Definition 12 A token is a quadruplet δ(id, i, p, U) where id is the identifier of the
data represented by the token, i is the replica identifier, p is the current place and U is
the set of tags attached to the token.

Token tags can be used to represent a number of things including the membership
to a data set, a data type, the passing of some tests etc.
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Figure 3.10: Free variables surrounding a typed transition: the cardinality of the input
set and of the output set determine respectively the arity of the input arc and of the
output arc.

Typed transitions Life cycle transitions, as defined earlier can consume any token
present on their input place. This implies that all tokens represent identical data, which
can sometimes be wrong. For example, the same data item can be present in a system
in two different formats; in this case some operation may require their input data to
be in a certain format, and the corresponding transition would consume only certain
tokens. With token tags, Life Cycle models can represent the fact that several data
types are in use in a single system. We now introduce typed transitions that can be
restricted to consume only certain types of tokens. The type of a token is defined by
the tags it holds (see Definition 13).

Definition 13 We call θ(A) the set of all possible token tags in life cycle model A.
Keeping in mind that a token can hold zero, one or more tags, the set of all possible
token types for A is then P (θ(A)) ∪ ∅ where P denotes the power set.

In addition to restricting the type of their input tokens, we must also specify the
type of output tokens. This allows to express, in the model, how typed transitions add
and remove tags from tokens.

Transitions are typed with predicates similar to guards in Colored Petri Net-
works [155].

Definition 14 A typed transition has its incoming and outgoing arcs annotated with a
list of free variables —one for each input token. Each free variable takes value in the
set of all possible token types, as defined in Definition 13.

In addition, a typed transition is attached a list of predicates, each being true or
false depending on the free variables’s value. We note Pred(x) the predicate for the free
variable x. Let t be a typed transition, and let Iv(t) be the set of free variables on the
input arcs of t. We say that typed transition t is enabled iff ∀v ∈ Iv(t), P red(v) is true.

As illustrated on Figure 3.10, in the case of typed transitions, the number of free
variables can substitute for the arc arity. On the figure, the cardinality of the set {x, y}
is 2 and we do not include the arc arity in the Petri Network.

Created

Write

Written Read

x

Readed

Analysis

Terminate

Terminated

Convert

x y

[JPG 6∈ x]
[JPG ∈ y]

[JPG ∈ x]

Figure 3.11: Example life cycle model featuring two typed transitions: Convert and
Read. Expressions next to the transitions determine what tags input tokens must have
to be consumed, and what tags are attached to output tokens.
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Figure 3.11 features an example life cycle model, complete with two typed transi-
tions; the model represents the life cycle of a data item that starts empty —as usual.
Transition Write adds a data payload to the item; this payload is an image and its
format may vary depending of circumstances we ignore. However, the program that
performs the write operation represented by the transition signals what type of graph-
ics it produced by placing a tag on the token. Further processing requires a JPG image
as input, as indicated by the free variable on the input arc of Read and its predicate. In
case the token does not have the “JPG” tag, the transition Convert is triggered, taking
a token without the “JPG” tag as input and producing a “JPG” token as output.

We note here that instead of listing all the elements of the free variables, predicates
only state the inclusion of certain tags of interest in the free variables. This allows to
manipulate a hierarchy of types —which root is the empty set— and allows a transition
to be triggered for a type tree by only specifying its root. Formally, let us consider two
sets of token tags A and B (that are also two token types). We say that A is a subtype
of B iff B ⊂ A.

Tags and composition When using life cycle composition, the token created on the
destination model is free of any tag. However, as we discussed earlier, token tags are an
easy way of sharing metadata between systems. Composition transitions can be typed
to indicate that some or all tags from the input tokens are placed on the output token,
effectively passing type information from one system to another.

Applications The expressive power of token tags and typed transitions allows users
to pack more information in their life cycle meta-models. Here we argue about four
important uses for them.

• Tags allow to insert more state information in tokens keeping the number of places
as small as possible in the model. State information may include things like data
format, provenance information, confidentiality level, quality checks and so forth;

• Typed transitions allow to represent operations on data as typed functions. As
all tokens in a same life cycle model represent copies of the same data item, typed
transitions document the format in which software components expect data items
to be in order to use them;

• The same tag attached to different data items (either sharing the same life cycle
model or not) allows to represent collections of related data. In conjunction, typed
transitions can represent operations on collections of data.

• Combined with composition, tags allow information to travel from a system to
the other, facilitating data integration.

In the remaining of this chapter, we describe the prototype implementation of the
meta model and how we connect it to existing applications. We believe that providing
a complete runtime system will enable users to come up with more creative use cases.

3.2 The Active Data Programming Model
The meta model described at the beginning of this chapter enables system designers to
reason about the data life cycles of their products; it also helps users of these systems to
integrate them better and observe complex data workflows at a human-friendly scale.
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From the meta model, we now develop Active Data, a programming model that
facilitates the development, the deployment and the maintenance of data life cycle
management systems. In this section, we describe the Active Data programming model
and illustrate concepts with pseudocode close to Java, the language in which the first
implementation is available. However, all examples can apply to future implementations
in various languages.

3.2.1 Principles
Active Data is a programming model and a runtime environment that can be defined
as “transition driven”. It allows to program applications by providing, for each life cycle
transition, the code to be executed when it is triggered. The code is executed on the
client side, in a way that does not alter the system’s performance. The model is data
centric and the user code receives information about the data life cycle only, and not
about the infrastructure, or the actual compute node that performed the transition.
For this programming model to work, data management systems and scientific
applications must report what they do with data and to data: this is called publishing
life cycle transitions. Data management systems and users are all clients of Active Data.

Here are the 3 main steps to get Active Data to work:

1. Make a computer representation of the life cycle model of the target data;

2. Connect the data management application to Active Data and make it report
when it performs an operation that corresponds to a life cycle transition;

3. Provide code to be automatically executed in reaction of life cycle transitions
being published.

The first two steps are the responsibility of the system developer and can be shipped
with software releases. The user, on their side, only has to provide the code they want
to execute in reaction to life cycle transitions.

At the center of Active Data is the Active Data Service that stores the state of all
live life cycles in a given application, updates them when transitions are reported by
programs, and notifies clients.

All actors benefit from this model; from the system developer perspective, pro-
viding the life cycle model along their software releases represents a very small effort
and a big added value to their users. From the user perspective, the life cycle model
is valuable documentation, and the programming effort required to exploit it is minimal.

The remaining of this section covers all aspects of programming with Active Data
through a synthetic use case involving three characters working in a neurology labo-
ratory: Louisa, Bob and Wallace. A particular experiment involves measuring brain
activity using EEG over long periods of time (several hours at once). Figures 3.12
presents the workflow setup for this experiment: several electrodes are implanted in the
patient’s brain. Each electrode records electric signal in a small part of the brain and
transmits it to the acquisition machine through an analog-to-digital converter (ADC).
Each ADC can handle up to 80 electrodes, hence the presence of 3 ADCs allowing to
use up to 240 electrodes at the same time. ADCs have a limited storage, allowing
them to keep recording for a few hours when they are unplugged from the acquisition
machine. On the acquisition machine, Louisa’s application controls the electrodes and



3.2. The Active Data Programming Model 41

Louisa’s application
Local storage

ADC 1

ADC 2

ADC 3 Shared storageAcquisition
machine

Figure 3.12: Workflow setup for the example use case. The patient is connected to the
acquisition machine through one to three analog-to-digital converters. The acquisition
machine performs analysis and stores raw data and results on the shared storage.

drives experiments. The limited local storage allows to edit and analyze raw signal for
one experiment at a time; raw signal and results are then transferred to a 9TB shared
storage.

We summarize the work and responsibilities of Louisa, Bob and Wallace as follows:

Louisa is a research engineer in charge of installing and configuring the EEG record-
ing application, and implementing the various analysis algorithms needed by re-
searchers.

Bob is a technician responsible of IT support in the laboratory; one of his duties is to
maintain the shared storage system that researchers use to store raw EEG signal,
experimental intermediate data and results.

Wallace is a neurologist. He tries to find evidence of a pattern in brain activity specific
to a certain kind of seizures; he records data with the acquisition machine, pro-
cesses records with Louisa’s application and stores experimental data and results
on the shared storage.

The workflow is data intensive: each electrode produces a files of about 1 gigabyte
per hour of recording. The size of the experimental data makes it difficult for Wallace
and other scientists to manage. They would all like to have a more integrated solution
so they could keep track of their data from the electrodes to the storage, through the
ADCs and the acquisition machine. In particular, they do not want to accidentally
remove or lose files, they do not want to forget to which patient a file belongs or what
treatment has been applied to a recording. Because their days are already quite busy,
they also want to be notified of progress without having to directly check the programs.

Louisa and Bob decide to turn their applications Active Data-enabled to allow their
users to automate custom task at key steps without having to modify any of the appli-
cations for each user.

3.2.2 Life Cycle Object Model
The first step for Louisa and Bob is to represent the data life cycle of their systems
separately. They have drawn their complete life cycle model which is presented on
Figure 3.13. Because the ADCs and the acquisition software are tightly connected,
Louisa decides they are part of a single system. The remote shared storage, maintained
by Bob, is a second system. The composition transitions are part of Wallace’s particular
workflow.
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Figure 3.13: Life cycle model for the example use case. The life cycle created by the
analog-to-digital converters and programs running on the acquisition machine is drawn
on the left. To the right of the two composition transitions is the model of the life cycle
created by the storage system.

Louisa focuses on data stages rather than physical infrastructure; this is why the
ADCs and the machine do not appear in the life cycle model. In the first system,
a token represents a file containing EEG data. The token on the Recorded place
represents that the acquired file is still present on the ADC’s memory. The token
moves to the Transferred place after the file reaches the acquisition machine. After
some preprocessing operations return, the token moves to the Ready place, meaning
it is now ready for analysis. From this point, the data file can be deleted from the
acquisition machine at any time with the Delete transition. There are two points of entry
between the acquisition machine and the shared storage: the Store raw composition
transition (when the raw data file is transferred to the shared storage) and the Analysis
composition transition (when new analysis results are produced and stored directly on
the shared storage). Analysis can be executed several times to produce more results,
as long as the file is not deleted, and the token is on the Ready place.

The Created place of the shared storage represents an empty file, similar to the
result of the “touch” Unix utility command. When the transfer from the source to the
shared storage is completed, Init is executed and the token is moved to Stored. After
that, the file can be overwritten several times or deleted.

Now, Louisa and Bob have to represent their life cycle models programmatically. To
do so, they use the object-oriented representation of the meta model offered by Active
Data.

The root of the model is a class called LifeCycleModel; objects of this class link to
Place, Transition objects.

Listing 3.1 presents the pseudocode for the life cycle model drawn on Figure 3.13.
The pseudocode is divided in three parts: first comes the definition of the left portion
of the life cycle model, then comes the definition of the storage life cycle model, and
the last two lines compose them. For conciseness, we present all the code at once, but
Louisa and Bob conveniently put each model in a separate file that they distribute to
Wallace. Wallace, on his side, gets the two models and compose them in a third file
that is specific to him.
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// Create the first life cycle model , specifying its SID
LifeCycleModel appModel = new LifeCycleModel("application");
// Add places , transitions and arcs
Place appCreated = appModel.getStartPlace ();
Place recorded = appModel.addPlace("Recorded");
Place transferred = appModel.addPlace("Transferred");
Place ready = appModel.addPlace("Ready");
...
Transition record = appModel.addTransition("Record");
Transition transfer = appModel.addTransition("Transfer");
...
appModel.addArc(appCreated , record);
appModel.addArc(record , recorded);
...

// Create the second life cycle model
LifeCycleModel storageModel = new LifeCycleModel("storage");
Place storageCreated = storageModel.getStartPlace ();
Place stored = storageModel.addPlace("Stored");
...
Transition init = storageModel.addTransition("Init");
Transition write = storageModel.addTransition("Write");
...
storageModel.addArc(storageCreated , init);
storageModel.addArc(init , stored);
storageModel.addArc(stored , write);
storageModel.addArc(write , stored);
...

// Compose the two models with composition transitions
appModel.addCompositionTransition("Store raw", transferred , storageModel);
appModel.addCompositionTransition("Analysis", ready , storageModel);

Listing 3.1: Pseudocode for the example life cycle models. Both models are implemented
separately and then joined by composition transitions.

Constructing a LifeCycleModel requires the system identifier (SID) of the system;
this class has methods for adding places and transitions, that also require names. Then
the places and transitions contained in the LifeCycleModel object can be retrieved
using the SID and the name associated with the place or transition:

Place p = appModel.getPlace("application.Recorded");
Transition t = appModel.getTransition("storage.Init");

This feature is very useful when using composition; in the example, after joining the
two systems with composition transitions, only appModel is manipulated; it now con-
tains the places and transitions of both models, and they are named with the “SID.name”
format.

The call to addCompositionTransition(String name, Place source,
LifeCycleModel destination) does three things: i) it adds a composition transition
to the model, named name; ii) it adds an arc between the source place and the new
composition transition; and iii) it adds an arc between the new composition transition
and the created place of the destination model.

Louisa and Bob have now fully modeled their life cycle model, and Wallace has a
complete representation of his experiment workflow. However, to fully benefit from the
power of Active Data, they must now link their application to the life cycle model.
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// Make the uid and setup the experiment parameters
String uid = "Doe_2400Hz_1";
String outputPath = "/path/to/raw/data/" + uid;
setupExperiment(outPath);

// Publish the new life cycle
ActiveDataClient client = ActiveDataClient.getInstance ();
LifeCycle fileLc = client.createAndPublishLifeCycle(appModel , uid);

// Actually start the experiment
startExperiment ();

Listing 3.2: Pseudocode for publishing a new life cycle. The UID used is a combination
of experimental parameters that allow to quickly reference the actual data file.

3.2.3 Publishing a New Life Cycle
Louisa, Bob and all the users of Active Data will manipulate LifeCycle objects. A
LifeCycle represents a data item in the system—a file in our example; it links to the
LifeCycleModel and contains all the tokens on the right places.

Now, Louisa’s application and Bob’s storage system must create LifeCycle objects
to link their files to Active Data. After that, the service saves the state of the life cycles
and is able to receive transition publications regarding the newly created file. Informing
the service that a new data item has been created is called publishing a new life cycle.

The arguments required to publish a new life cycle are the life cycle model and the
data item unique identifier. In her application, Louisa makes a call to the Active Data
client interface when an experiment starts, before any data is recorded (Listing 3.2). In
the code, we see that Louisa chose to use experimental parameters as unique identifier1

for the life cycle. Louisa is clever: if she had chosen to use the file path as identifier,
she would have had to deal with different absolute paths between the ADCs and the
acquisition machines and file movements. Instead she uses an identifier that:

• Allows to construct the target file absolute path both on the ADCs and on the
acquisition machine;

• Can be constructed on the fly: later in her code, when Louisa faces “experiment
number 1 for patient John Doe at 2400Hz”, she can reference the life cycle as the
one identified by “Doe_2400Hz_1”.

Sometimes users want to be informed that a new data item has been created in a
particular system. Subscribing to transitions from the model will delay the information
because an arbitrarily long time can pass between the creation of a data item and
its first transition. For this reason, an additional transition called create transition
is automatically added to each life cycle model. When a client publishes a new life
cycle, the service silently publishes its create transition. Clients can subscribe to this
transition like to any other. Clients get the create transition from a life cycle model
with a method call on a LifeCycleModel object:

Transition create = appModel.getCreateTransition ();

Louisa’s application now creates a life cycle in Active Data for every new experiment
started by Wallace and other users. These life cycles all have only one token on the
model’s Created place.

1The identifier here is only hardcoded for readability.
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Figure 3.14: Transition requiring the publishing process to specify which input tokens
are consumed, and how they are laid out on the output places.

3.2.4 Publishing Transitions
Now, Louisa’s application must move the unique token originally present on the Cre-
ated place to other places to reflect the progress of files in her application.

The application and the storage system must notify Active Data of the operations
they perform on data. This is called publishing a transition; transitions must be pub-
lished as soon as possible after an operation is performed. In the simplest case, Louisa’s
application stored the LifeCycle object that was returned when she published the new
life cycle (Listing 3.2). Publishing the first transition (after a record is stored on the
ADC) is a single call:

LifeCycle fileLc = client.createAndPublishLifeCycle(appModel , uid);
...
Transition t = appModel.getTransition("application.Record");
client.publishTransition(t, fileLc);

The first line is the same as before and just creates a life cycle; the last
two lines get the Transition object by its name and publish it by calling the
publishTransition(Transition, LifeCycle) method of the Active Data client in-
terface; the transition to publish and the life cycle that is being updated are given as
arguments.

This function call is asynchronous: it returns immediately, regardless of whether
someone has subscribed to the transition or not.

In more complex cases, the transition’s input place has more than one token and
triggering the transition requires to tell Active Data which token has to go through the
transition. An even more complex case is when the transition has several input and/or
output places; in this case (such as the one depicted on Figure 3.14), the publishing
code must specify:

• What tokens are consumed, and from which input places;

• How the output tokens are distributed over the output places.

To specify this behavior, developers can attach a transition dealer to transitions in
the life cycle model. A dealer is a class that extends the TransitionDealer class. It
is implemented by the publisher—in our case, Louisa and Bob—and must implement
the doDeal(LifeCycle, Transition) method. When implementing the dealer, the
publisher has access to three primitives; calling these primitives while the publication
is being processed indicates how tokens are consumed and produced:

consume(Token) indicate that the specified token is consumed by the transition;
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produce(Token, Place) indicate that the specified token is produced by the transition
on the specified place;

produceNewToken(Token, Place) indicates that a new token is produced by the tran-
sition on the specified place.

The difference between produce and produceNewToken is that the former indicates that
the “produced” token is in reality a token moved from an input place to an output place;
the latter indicates a new token had to be produced because the total number of output
tokens is greater than the total number of input tokens for this transition.

Listing 3.3 gives an example of transition dealer for the transition on Figure 3.14.
The core of the code is the set of calls to the consume and produce methods that
orchestrate the movement of tokens. Before that, the sample shows how to examine
the places and get the tokens they contain, in order to pick and chose the tokens. The
method LifeCycle.getTokens(Place) returns the tokens contained on a given place
for a given life cycle. The result is a hash table that maps a replica identifier (see
Subsection 3.1.1.5) to a Token object. The end of the example shows how the dealer is
attached to the transition; the transition is then published normally.

The dealer —which gets a chance to examine every place and token and decide
which to pick— is called internally by Active Data when a process is attempting to
publish the transition it is attached to. If no dealer has been explicitly attached to the
transition (which is the general case) a default transition dealer is present. For complex
cases such as the one we are discussing, the default transition dealer only guarantees
that the right number of tokens is consumed from the input places, and that the right
number of tokens is produced on the output places. If the number of output tokens
is greater than the number of input tokens, the default dealer produces the necessary
number of new tokens by calling produceNewToken(Token, Place).

Note that a transition dealer may be attached to multiple transitions, but that a
transition can only have one dealer attached. Once the dealer is attached, it replaces
the default behavior and is called each time the transition is published.

At this point, Louisa’s application is Active Data-enabled. Bob does the same with
his storage system. In order for Wallace’s files in the storage system to be linked through
Active Data to the files in Louisa’s application, some additional code is required to
publish the composition transitions.

3.2.5 Publishing a Composition Transition
To inform Active Data of the link between Louisa’s application and Bob’s storage sys-
tem, Louisa’s application must publish a composition transition every time it sends a
file to Bob’s storage system.

Publishing a composition transition is similar to publishing a regular transition,
except it requires an additional argument: the unique identifier of the data item in the
new system. Listing 3.4 demonstrates how to publish the Analysis transition.

Here, the composition transition consumes the only token present on the Ready
place. This token’s unique identifier is “Doe_2400Hz_1”; the analysis task reads its
input file on the acquisition machine and stores the result in Bob’s storage system. In
return, the storage system assigns a numerical identifier of its own to the result file,
and returns it. This numerical identifier (for example, 1234) allows Wallace to later
get the physical file in the storage system. When Louisa’s application publishes the
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TransitionDealer dealer = new TransitionDealer () {
public void doDeal(LifeCycle lc, Transition transition) {

// Get the input and output places from the life cycle model
LifeCycleModel model = transition.getModel ();
Place input1 = model.getPlace("example.input1");
Place input2 = model.getPlace("example.input2");
Place input3 = model.getPlace("example.input3");
Place output1 = model.getPlace("example.output1");
Place output2 = model.getPlace("example.output2");

// Get the input tokens , indexed by their replica id
Map <Integer , Token > t1 = lc.getTokens(input1);
Map <Integer , Token > t2 = lc.getTokens(input2);
Map <Integer , Token > t3 = lc.getTokens(input3);

// Pick the tokens to consume
Token token1 = t1.get (1);
Token token2 = t2.get (6);
Token token3 = t2.get (2);
Token token4 = t3.get (4);

// Consume the input tokens
consume(t1);
consume(t2);
consume(t3);
consume(t4);

// Move the tokens to the output places
produce(token1 , output2)
produce(token2 , output2)
produce(token3 , output1)
produce(token4 , output1)

}
}

Transition transition = model.getTransition("example.t");
transition.setDealer(dealer);
client.publishTransition(lc , transition);

Listing 3.3: Example of transition dealer implementing a custom behavior for the
transition featured on Figure 3.14. The dealer is attached to a transition, and the
transition is published.

composition transition with this identifier, Active Data creates a new token on the
Created place of the storage model. The identifier of the new token is “4321”.

Because composition transitions only consume one token and produce a single new
token on one place, no transition dealer is ever needed. The only question is which
token is consumed by the transition, and it is answered directly in the call.

Now Louisa’s and Bob’s systems are fully Active Data-enabled. For any operation
from the life cycle model performed on data by either system, the life cycle in Active
Data is updated to reflect the current state of the data.

3.2.6 Transition Handlers
Wallace is quite happy now. The two applications he uses every day can now report
to him programmatically. With little programming savviness he can spend less time
monitoring his experiments and more time writing his article. Indeed, reacting to data
transition publications requires to write a transition handler, that is then subscribed to
a transition using the Active Data client interface. Active Data later decides when to
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// Publish the new life cycle and transitions
String uid = "Doe_2400Hz_1";
LifeCycle fileLc = client.createAndPublishLifeCycle(appModel , uid);
...
client.publishTransition(preprocessing , fileLc);

// Launch an analysis that writes its results in the remote storage
Long storageId = analyze("/path/to/data/" + fileLc.getUid ());

// Publish the composition transition with the storage identifier
Token token = fileLc.getTokens(ready).get (0);
Transition trans = appModel.getTransition("application.Analysis");

client.publishCompositionTransition(trans , token , storageId);

Listing 3.4: Publication of a composition transition. The identifier for the new token is
provided by the destination system, then passed to Active Data.

execute the handler.
Wallace decides to start with an easy handler: he wants to receive an email every

time an acquired file is ready for processing, i.e. its token is on the Ready place, right
after the transition Preprocessing is executed.

TransitionHandler handler = new TransitionHandler () {
public void handler(Transition transition , bool isLocal , Token [] inTokens , ↘

→Token [] outTokens) {
Token fileToken = outTokens [0];
String uid = fileToken.getUid ();
String body = "The experiment " + uid + " produced a file that is ready ↘

→to be processed in Louisa ’s application.";

sendEmail("wallace@domain.edu", "EEG record ready to be processed", body);
}

}

Listing 3.5: Example of a transition handler that sends an email every time the
transition Preprocessing is published.

The handler is presented in Listing 3.5. A handler is an object that implements the
TransitionHandler interface. Wallace writes his code in the handler method. The
method receives four arguments that provide the context necessary to write flexible
code:

transition is the object representing the transition that was published and caused
this handler to be executed;

isLocal is true only if the client running the handler is the same client that pub-
lished the transition (this is valid because in Active Data every client can be both
subscriber and publisher);

inTokens the set of tokens that were consumed by the transition;

outTokens the set of tokens that were produced by the transition.

In the handler, Wallace examines the token produced by the transition, extracts
its unique identifier and uses it in the email body. Since the couple (SID,UID) links
to the real data file, Wallace could even attach the preprocessed file to the email.
Additionally, tokens also link to the complete LifeCycle object which allows to observe
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where the other tokens are located, and examine the complete state of the data.

The Transition argument allows to tie the same handler code to several transitions.
In addition, the same TransitionHandler object is used by Active Data every time in
needs to be executed; in other words, transition handlers are stateful. For example,
imagine Wallace does not want to get an email every time a file is preprocessed; he
would like the handler to send en email every time 5 files are ready instead. Listing 3.6
shows his new transition handler.

TransitionHandler handler = new TransitionHandler () {
private int count = 1;
private uids = "";

public void handler(Transition transition , bool isLocal , Token [] inTokens , ↘
→Token [] outTokens) {
// Store a string that contains all the UIDs
uids += outTokens [0]. getUid () + "\n";

// Continue only 1 time out of 5
if((++ count % 5) == 0)

return;

// Construct a message using all the UIDs
String body = "The experiment produced 5 files that are ready to be ↘

→processed :\n" + uids;
sendEmail("wallace@domain.edu", "EEG records ready to be processed", ↘

→body);
uids = "";

}
}

Listing 3.6: Example of a stateful transition handler that sends an email every 5 times
the transition Preprocessing is published.

This new handler is slightly different; every time it is executed, it looks at the token
produced on the Place and gets its UID. The UID is concatenated to a string that
will be joined to the mail body. In addition to this string, the handler stores a counter
that counts the number of times it has been executed since the last email was sent.
When the counter is equal to 0 (one time out of five), the email is sent to Wallace.

Wallace now has his handler ready for Active Data. The next step is to subscribe it
to the Preprocessing transition.

3.2.7 Transition Subscription
Wallace now wants to attach his transition handler to a transition, so it can be run
when a transition is published; this action is called subscribing to a transition.

Because many data items share the same life cycle model, the number of tran-
sitions being published can grow rapidly. Wallace, however, wants his handler to
be executed only when it is relevant to him, and ignore everything else. Active
Data allows programmers to cut down the number of transitions their code will
react to by providing two kinds subscriptions: i) subscribing to a specific transition
for any data item and ii) subscribing to a specific data item for any life cycle transitions.

Paying close attention to Wallace’s handlers in Listings 3.5 and 3.6, we notice that
he doesn’t test the value of the Transition argument; he does not need to, because
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he subscribed the handler to the Preprocessing transition only. Listing 3.7 defines a
handler and now subscribes it this particular transition.

Now, imagine that Wallace has an extremely important experiment. This time, he
wants to be notified of every transition, but only for a particular life cycle. Listing 3.8
shows how he uses the second type of subscription to subscribe not to a transition, but to
a life cycle. The handler now includes the name of the published transition in the email.

As another way of avoiding getting overloaded by transition notifications, Active
Data provides a method to return a copy of a life cycle (including all places and the
tokens they contain). This feature, discussed in Subsection 3.2.10, allows Wallace to
occasionally get the state of a life cycle without reacting to all the intermediate transi-
tions. Even more ways to filter out irrelevant transition events are detailed later in this
section, in particular in Subsection 3.2.9.

Wallace now gets notifications that allow him to spend less time looking at progress
bars, and to spend more time writing his article. He will soon find out he can do more
with Active Data’s advanced features.

3.2.8 Tagging
As explained in Subsection 3.1.2.6, tags are attached to and removed from tokens by
transitions. In this subsection we describe how token tags are coded and the possibilities
Active Data offers for tagging.

3.2.8.1 Token Type
Despite containing results for varying experimental conditions, Wallace’s files are rep-
resented in Active Data with identical tokens—except their identifiers. Token tags can
be used to attach types that reflect data types and many more things to tokens.

Active Data provides a specific method to examine tokens and determine the pres-
ence of tags:

Token.hasTag(String tag)

The type of a token—defined as the set of all its tags—can be retrieved using a method
that returns the set of tags attached to a token:

Token.getTags ();

3.2.8.2 Taggers
Active Data offers Wallace two ways to tag tokens; the main difference between both is
where tagging occurs:

TransitionHandler handler = new TransitionHandler () {
...

};

// Subscribed the handler to a single transition
Transition preprocessing = appModel.getTransition("application.Preprocessing");
client.subscribeTo(preprocessing , handler);

Listing 3.7: Subscribing to a single transition: the handler will be executed for any data
item going through this transition only.
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TransitionHandler handler = new TransitionHandler () {
public void handler(Transition transition , bool isLocal , Token [] inTokens , ↘

→Token [] outTokens) {
String uid = outTokens [0]. getUid ();
String transitionName = transition.getName ();
String body = "Life cycle " +

uid +
" has passed transition " +
transitionName;

sendEmail("wallace@domain.org", "Progress", body);
}

};

// Create a life cycle , then subscribe to it
LifeCycle lc = client.createAndPublishLifeCycle(appModel , uid);
client.subscribeTo(lc, handler);

Listing 3.8: Subscribing to a single life cycle: the handler will be executed for any
transition traversed by this life cycle only.

• Attaching tags to tokens in a transition dealer, i.e. on the publishing process side;

• Attaching a tagger to the transition in the model, i.e. on the Active Data Service
side (the tagger being part of the life cycle model).

The first option simply relies on two methods to call inside a dealer to add and remove
tags from a token:

Token.addTag(String tag);
Token.removeTag(String tag);

The second option makes use of objects called Tagger. A tagger is attached to a
transition in the LifeCycleModel. When present, it is automatically called when the
Active Data Service receives a publish request from a client process. Thus, unlike the
option involving a dealer, using a tagger does not require any client intervention and is
not affected by client-side errors.
Tagger tagger = new Tagger () {

public void tag(Transition transition , Tokens [] inTokens , Token[] ↘
→outTokens , Token[] newTokens) {
for(Token t: newTokens)

t.addTag("raw data");
}

}

Transition storeRaw = appModel.getTransition("application.Store raw");
storeRaw.setTagger(tagger);

Listing 3.9: Tagger example: tag each new token in the storage system coming from
the Store raw composition transition.

A tagger is an object that implements the Tagger class and its tag(Transition,
Token[], Token[], Token[]) method. This method receives four arguments: the
transition being published, and the tokens going through the transition, ordered in
three sets: input, output and new tokens; these three sets result directly from the
dealer.

As a first example, Wallace would like tokens in the storage system to be tagged
differently if they represent raw data. A simple way to do it is to add a tagger to the
Store raw transition. This way, every time a client publishes this transition, Active Data
attaches the “raw data” tag to the output token. This solution is presented in Listing 3.9.
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TransitionHandler handler = new TransitionHandler () {
public void handler(Transition transition , bool isLocal , Token [] inTokens , ↘

→Token [] outTokens) {
...
sendEmail("wallace@domain.edu", "EEG raw record written", body);

}
}

HandlerG guard = new HandlerGuard () {
public boolean accept(Transition transition , Token [] tokens) {

return tokens [0]. hasTag("raw data");
}

}

Transition = appModel.getTransition("storage.Write");
client.subscribTo(transition , handler , guard);

Listing 3.10: Using a handler guard to run a transition handler only for some types of
tokens. The handler code, very similar the one in Listing 3.5, is not shown.

Taggers have the ability to examine the actual file represented by a token and place
tags according to information external to the model. Thus, taggers are a good way to
inject external information in the live life cycle. As the tags will stick to tokens during
composition, the information they carry will be available to new systems when tokens
reach them.

3.2.9 Handler Guards
In additions to mechanisms already discussed to cut down the number of transition
notifications a client receives, we introduce handler guards. Handler guards are not
part of the life cycle model and are not the responsibility of the system’s developer.
Instead, they are specific to users and are attached to subscriptions.

When subscribing to a transition, Wallace can provide an object called
HandlerGuard. This object implements a single boolean method accept(Transition,
Token[]). The Active Data Service stores handler guards along handler subscrip-
tions. When Wallace calls a variant of publishTransition, the service passes the
corresponding couple (transition, inputtokens) to the accept method; if the method
returns true, Wallace’s handler will be executed; otherwise, the event is dropped.
Since guards are associated to subscriptions, Wallace’s guard has no effect on other
clients.

We illustrate this principle with Listing 3.10. Here Wallace wants to benefit from
the “raw data” tag placed by his tagger in Listing 3.9; he wants to receive an email each
time a raw data file is overwritten, which corresponds to the transition Write. He starts
by writing a very simple handler that always sends an email; then he writes a guard
that returns true only if the transition’s input token has the tag “raw data”; finally
he subscribes his handler to the Write transition, along with the guard. Because the
Service notifies the client only if the guard returns true, the handler needs not test the
presence of the tag and is executed fewer times.

Handler guards are very effective on reducing the number of handler executions
because they are evaluated by the service. They also allow clients to write simpler
code; the alternative approach would be to start a transition handler with a test; this
would lighten the charge on the service but also make client applications trickier to
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String storageSID = "storage";
String storageUID = "36253";

ActiveDataClient client = ActiveDataClient.getInstance ();
LifeCycle lifeCycle = client.getLifeCycle(storageSID , storageUID);
Place ready = appModel.getTransition("application.Ready");

Set <Token > appTokens = lifeCycle.getTokens(ready).values ();
Token token = appTokens.get(0);
String appUID = token.getUID ();

copyDataFromAcquisitionMachine(appUID);

Listing 3.11: Querying the complete life cycle of a data item from a partial knowledge.
The UID of a token links to the real life data.

implement and lead to poor design.

3.2.10 Life Cycle Querying
Offering a complete view of the state of data distributed over multiple heterogenous
systems and infrastructure is a strong motivation for this work, and guided the design
of our meta-model. To this end, we briefly introduced the LifeCycle class that allows
to examine all places, transitions and tokens for any data item. An important question
remains: how to make this information accessible to any programmer, no matter where
their code is running in a complex distributed application?

To answer this question, we consider the only piece of information that is available to
any code, in any system: the couple (SID,UID). In other words, we consider that any
piece of code handling a data item can answer two questions: i) in what system is this
code running? and ii) what is the local identifier of the data item being manipulated?

Active Data includes primitives for querying the whole life cycle of any data item.
In order to make these primitives available anywhere in any system, they require the
two arguments discussed above: a SID and a UID. Let us consider the storage system
of our example use case (Figure 3.13); the storage system is used for many applications
other than Louisa’s. This system is extremely minimal and does not store the origin of
data. Unfortunately, a problem occurred: Wallace noticed a specific file is corrupted,
and it has to be taken from the source again.

The storage system cannot possibly know that the file is coming from the acquisition
machine, and that a copy may still be there. Using Active Data, Wallace’s view expands
beyond the storage system and he gets information pointing to the source (and the
identifiers) in Louisa’s application. This principle is illustrated in Listing 3.11; from
the local knowledge, in the storage system, of the system identifier (“storage”) and of
the unique identifier of the corrupted file (“36253”), a query for the complete life cycle
is made to the Active Data Service. Then the code examines the returned LifeCycle
and the Ready place in particular (we could have examined every place to determine
where tokens are, but we decide to keep this example short); the first token found is
also examined to get its UID; the unique identifier, as said previously, links directly to
the real-life file.

The query feature is an important building block for data integration: Active Data
integrates under a single namespace the identifiers of the same data from different
systems that were not designed to collaborate and provides them to users and any
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Figure 3.15: Architecture of Active Data: clients (data management systems and users)
communicate with a centralized service in a Publish/Subscribe fashion.

process.

3.3 System Design
In this section we discuss the prototype architecture of Active Data and design choices.

3.3.1 Architecture
Active Data is composed of two parts: i) the Active Data Service, which manages
data life cycles, receives transition publications, notifies clients of publications, and
guarantees that the execution is correct with respect to the life cycle model, and ii)
the programming interface (API), which allows data management systems to publish
transitions and programmers to develop applications by subscribing transition handlers.

For the Active Data Service, managing life cycles has two functions: i) maintaining
the current state of each life cycle and ii) allowing clients to query life cycles.

Clients of the Active Data Service are of two kinds:

• data management systems and user applications are client of the Active Data
Service when they publish transitions; sometimes the same client that publishes
transitions can subscribe to handlers;

• end users are clients of the Active Data Service when they query the state of life
cycles and subscribe handlers to get notifications or run local tasks.

At this time the service is centralized, which allows it to easily maintain the consis-
tency of life cycles.

3.3.2 Active Data Service
The Active Data service is responsible for maintaining the current state of the life cycle
of any data item in the system. It must satisfy queries from clients who want to obtain
the current state of a life cycle and transition publications. This subsection describes
how the Active Data Service communicates with client and how the most important
operations are executed.

3.3.2.1 Client-Service Communication
Figure 3.15 shows the architecture of Active Data. Multiple clients all communicate with
the Active Data Service; clients never communicate with each other and the service
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never initiates communication with clients. This pull design allows Active Data to
work when clients are deployed behind NATs and firewalls that can be found on some
infrastructures, like desktop grids.

Because the Active Data programing model is mainly based on two operations that
are publishing transitions and subscribing handlers, it seems natural to use the Pub-
lish/Subscribe paradigm [156] for client-server communication. To accommodate the
two types of clients of Active Data, every client can be both publisher and subscriber
at the same time.

The Active Data Service maintains data structures that link each transition to a set
of subscriptions, and a messaging queue for each client. Then, when a client publishes
a transition, the service issues an event for each subscribed client and places it in
the client’s queue. Events are placed in the queue in the order they arrived on the
service, meaning the service maintains a total order on events2 Subscribers regularly
make requests to the service to get all the events in their queue, after which the service
clears it. Finally clients can locally run their handlers according to the information
contained in events: which transition was published, and on which life cycle.

3.3.2.2 Performance Considerations
The frequency at which clients pull events from the service in an important parameter;
by default, it is set to 60 seconds and can be set to a different value by each client.
We call this parameter pull frequency. A short pull frequency makes a system more
reactive (the time between a transition publication and handler execution is smaller)
but creates a heavier load on the service. Conversely, a long pull frequency allows the
system to handler many more clients but applications relying on handler executions
will take more time before being notified of transitions. A pull frequency of a second or
under is unnecessary for most applications that notify users, share data sets or perform
maintenance tasks on data. On infrastructures like desktop grids where compute nodes
are very loosely coupled and can be offline for a long time, a pull frequency of several
hours—or even days—can be satisfying.

At this time, the Active Data service is mono-threaded and can process only one
client request at a time. However, its event-driven design and the small time required
to publish a transition and pulling events allow it to handle a system with thousands
of life cycles and clients.

3.3.2.3 Publication Processing
When a client issues a transition publication to the service, the latter performs several
tasks to ensure that the request is valid and that the concerned life cycle is left in a
correct state. Here are the steps the Active Data Service takes to handle a transition
publication:

1. Checks: the service checks that the transition being published is actually part of
the life cycle model of the data item concerned and that it is enabled;

2. Perform the transition: the service moves the tokens from the input places to the
output places according to what the client’s dealer decided. New tokens are also
produced according to the dealer, but the service assigns them definitive replica
identifiers that are guaranteed to be unique;

2Ordering the events according to when the operation corresponding to a transition took place would
require Active Data to implement a global clock, which has not been considered yet.
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3. Execution of the tagger : if a tagger is attached to the transition, the service
executes it, passing the tokens as arguments;

4. Creation of events: for each subscribed client, the service creates an event and
places it in the client’s queue.

3.3.2.4 Taggers Execution
The execution of user-supplied code through taggers during step 3 of the above para-
graph brings some difficulties. Because they are executed on the service’s main thread
during the publication of a transition, it is critical that the code of taggers execute very
shortly; a blocking tagger would be a very serious issue as it would slow down the whole
system, making the publication of some transitions abnormally long.

It is also very important that taggers remain relatively small to keep the service’s
memory footprint from growing too large, which would also impair the whole system.

3.3.3 Active Data Client and Execution Model
3.3.3.1 Events Pulling
Clients communicate with the service via an interface called Active Data Client. The
first time it is called, the interface creates a session with the service and identifies
itself with a unique string called client identifier. A client can keep the same identifier
over several successive sessions. When the client interface receives local publish and
subscribe requests, it adds the client identifier and forwards them to the service. When
subscribing to transitions, the handlers is not sent to the service. Instead the client
interface sends the transition and the client identifier, which is enough for the service
to store the subscription.

The Active Data Client interface manages a separate thread called
PullEventsThread which only purpose is to regularly pulls events from the ser-
vice —still providing the client identifier—and run transition handlers. All transition
publications, subscriptions and other queries are performed on the caller’s thread.
When the PullEventsThread perform a pullEvents() call to the Active Data Service,
it gets a list of Event objects in return; if no transition to which the client had
subscribed has been published since the last call to pullEvents(), an empty list
is returned. An Event object contains the information necessary to locally run the
subscribed transition handlers: the name of the transition that was published, the
tokens that were consumed and produced; as a commodity Event object also contain
a boolean that indicates whether the client pulling the event was the publisher of the
transition.

3.3.3.2 Transition Handlers Execution
When pullEvents() returns a non-empty list, the PullEventsThread loops through it
and for each event it gets the TransitionHandler object corresponding to the transition
and executes is handler() method. The handlers are run serially by this thread, in a
blocking way. Because the events in the queue are totally ordered, the handlers are
run in the order the transitions were received by the service. If several handlers were
subscribed for the same transition or life cycle, the order in which they are executed is
unspecified. Handlers must return shortly to avoid blocking the local queue and perform
any lengthy operation in a separate thread. In the case when a handler would take a long
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Figure 3.16: Sequence diagram for handler subscription and execution. A publisher
(“Hadoop”, in red) publishes transitions through its own local Active Data Client. A
subscriber (“Client”, in blue) also makes calls to its local Active Data Client instance
to subscribe to the transition. Once the client is started (after the call to start()), a
separate thread managed by the Active Data Client checks for events with no further
intervention from the client.

time to run, it would not block the entire system, but only the local PullEventThread.
As such, even a blocked transition handler would not prevent the client to publish
further transitions.

This sequence of operation is illustrated by Figure 3.16. This diagram shows that
each side—subscriber and publisher—has its own Active Data Client and never com-
municates with the service directly. The figure also shows that when subscribing to a
transition, the transition handler stays on the client and never reaches the service. The
colors on the figure indicate where the code is running; threads sharing the same color
run on the same machine. It is clear from the diagram that the client code makes a
single call for their handler, and that the burden of treating events and managing the
execution of handlers is on the Active Data Client.

3.3.4 Verification
Detecting incorrect behavior of processes in large distributed systems is very difficult
in nature. In a task centric approach, a task is considered successful as long as it
returns successfully (with a 0 return value on Unix systems or the equivalent on other
platforms). However, the success—or the absence of explicit failure—of a task does not
mean the data is left in the expected state. Focusing on the progress of data life cycle,
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incorrect steps can be detected very early, as soon as an operation attempts to modify
the state of a data item in a way that is not valid with respect to the life cycle model.

Coupling the life cycle meta-model with the service-side runtime environment allows
model checking at runtime. Every time a client attempts to publish a transition through
the API, the Active Data Service checks the request against the life cycle it has in
memory to determine if it is valid in two ways:

• The transition published must be valid (i.e. be part of the concerned life cycle)
and enabled;

• the tokens specified by the transition dealer must be on the place the dealer claims
they are.

This verification allows to maintain a consistent life cycle on the service, forbidding
several clients to consume several times the same tokens with one or different transi-
tions. Additionally, the service raises an exception each time a client tries to publish
a transition in a way that violate the model, making client processes fail early. In ad-
dition to providing the information earlier to users, the information is more accurate,
since the granularity of data life cycles is finer than the one of tasks (as discussed in
Subsection 3.1.1.1 and with Figure 3.2 in particular).

3.3.5 Consistency
When a client makes a query to the Active Data Service for the current state of a life
cycle, the returned object might already be out-of-date; this happens when another
client publishes a transition between the moment when the service returns the life cycle
and the client gets a chance to examine it. This implies that the view that clients have
of life cycles can always be inconsistent with the actual state of the life cycle, and that
the only consistent copy of a life cycle is the one that exists on the service. It is neither
good practice nor efficient to subscribe to all transitions to keep a local up-to-date copy
of a life cycle because this creates an unnecessary load on the service and the client and
does not prevent inconsistencies.

3.3.6 Techniques to Publish Transitions
Different strategies exist for making a system Active Data-enabled, i.e. making it publish
transitions to an Active Data Service. We identify, detail and discuss the advantages
and disadvantages of three of them: instrumenting the system, reading its logs and
using an existing notification system.

3.3.6.1 Instrumentation
The most obvious and straightforward way of making a data management system Active
Data enabled is to instrument its code. In the code of the system, each time an impor-
tant operation is performed, we add a call to the Active Data client API to publish the
corresponding transition.

There are many advantages to this technique: because the transition is published
as soon as the operation is done, the service is informed right away, with no delay. It
is also the technique that allows the finest grain for life cycle models, because every
operation can be represented on the model. However instrumenting the code requires
to have access to the code, which is not always the case. Additionally, this technique
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is intrusive: the API calls to Active Data can get in the way of the system code, and
make it harder to maintain. This last point is alleviated by the relatively small size of
the Active Data library and the conciseness of its API calls.

This technique is the one recommended for developers that want to make their data
management system Active Data-enabled in the most accurate way (without missing
any important operation) and allow their users to connect it to Active Data effortlessly.

3.3.6.2 Log Processing
Another approach is to publish transitions based on application logs. Many applications
provide one or several log files of varying verbosity as they run. It is often possible to
read about the creation of data items or operations from the logs. For this to work, the
logs must present at least a string that uniquely maps to an operation—so we know
which transition to publish—and the identifier of the data item.

The framework involved is always the same: the application is running normally
and writes messages to a log file. In parallel, a “scraper” process reads the log file,
extract information about data operations, translates them to life cycle transitions and
publishes them. The application is usually not aware of Active Data and requires no
modification.

The main advantage of this technique is that it is completely not intrusive, and does
not require the application source code. It is also a viable alternative to instrumenting
the source code even when we have access to it: inserting well formed log messages in
the code is less intrusive, does disturb the maintenance of the application and allows to
achieve about the same result.

The first downside of this approach is that it requires the implementation of a
scraper program and to run it beside the application. The second important downside
comes from the decoupling of the application and its scraper: in many systems, logs are
insufficient to get the desired level of detail, and the resulting life cycle model will be
coarse grained; in addition, because the format of logs is rarely documented and fixed,
application updates may break the scraper.

This technique is the right tradeoff for users of a non Active Data-enabled system
when they do not have access to the source code, or do not have the resources to study
the code and instrument it.

3.3.6.3 Notification Systems
The third approach uses notification services existing in applications and translates
native notifications into life cycle transitions. As with log processing, this approach
requires an additional program to run beside the data management system. This pro-
gram gets notified of events directly by the system, finds the life cycle transition that
corresponds to each event, and publishes it to the Active Data Service. Such notification
systems are available in many system, like triggers’ in a database management system,
inotify [157] for Linux file systems or even email notifications.

This approach shares advantages and disadvantages of the two previous approaches.
It is completely non intrusive, and usually well documented. Notifications are usually
delivered quickly, which allows the same level of reactivity than instrumentation
without having to modify the code of the application. A second program must be
developed on the side to receive notifications from the system and treat them, but
it is more efficient than with log processing thanks to its event-driven design. Like
with log processing, the level of detail provided by notifications might not be enough
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Figure 3.17: Project structure: the Active Data library is organized in four code modules
and a module for unit testing; the “Service” module contains the code of the Active Data
Service and the “Client” module contains the client interface used to communicate with
the service. The two other modules are used by both clients and the service. Above
each module is presented a preview of the most important classes it contains.

to determine precisely what transition is to be published, and the granularity of
notifications may not cover all the needs of users.

To conclude, the choice of one approach compared to the others depends on the
target system and on the needs of users. A user may be satisfied simply reading the
standard output of a program and publishing a couple transitions during a very long
run. However, the help of the system developer always achieves the best results.

3.4 Implementation
This section gives about the implementation of Active Data.

3.4.1 Library Description
Active Data is released as a Java JAR library; the code base represents about 4,500
lines of code (excluding comments). The client library was designed to be minimal,
allowing it to run on big supercomputers as well as the most restrictive platforms, such
as sensors or acquisition machines. Its small compiled size of about 140Kb, its small
memory footprint and low CPU requirement make it easy to deploy on nodes with few
memory and computing power.

Active Data is licensed under the GNU General Public License; it development tree
is private, but its code is released with each major version and can be downloaded at
the Inria Forge at http://active-data.gforge.inria.fr/.

Active Data is entirely object oriented. The project structure is described on Fig-
ure 3.17. The code base is divided in five modules: “Client”, “Service”, “Model”, “Commu-
nication” and “Tests”. The “Client” module contains the interface to communicate with
the service, which code is in the “Service” module. “Model” contains the meta-model
implementation and is used by clients and the service: LifeCycleModel, LifeCycle,
Place, Transition, Token, etc. The “Communication” module contains communication
protocols for clients and the service. It is discussed in the next subsection. The fifth
module contains over 20 unit test cases for every other modules. The unit tests are
automatically run by the compilation workflow, insuring it stops when any test fails.

The code is very flexible and allows essential components to be easily replaced by im-
plementing generic interfaces. As such, offering a new communication protocol between

http://active-data.gforge.inria.fr/
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java -cp active_data_lib.jar
org.inria.activedata.examples.cmdline.PublishTransition
<AD host >
[-p Ad port]
-m <model class >
-t <transition name >
-sid <data item SID >
-uid <data item UID >
[-newId <new UID >]

Listing 3.12: Usage of the command line tool for publishing a transition.

the clients and the service simply requires to implement the ActiveDataClientDriver
interface; entirely changing the strategy for storing the life cycles only requires to im-
plement the LifeCycleCatalog interface.

3.4.2 Communication Protocol
The “Communication” module contains protocol implementations for clients and the
service to communicate in a way that meets the user requirements. At this time, two
protocols are available: a default protocol making direct method calls—suitable for
testing, when the client and the service run inside the same Java Virtual Machine—,
and Java RMI.

The modularity of Active Data make it very easy to add new communication proto-
cols by implementing the ActiveDataClientDriver interface for the client, and a server
counterpart for running on the service.

Clients must implement a maximum of 14 methods such as publishTransition(),
newLifeCycle(), subscribeTo(), etc. Some methods are optional, e.g. connect() and
disconnect().

On the service side, a class must listen to client requests and transmit them to the
local ActiveDataService singleton. It is possible to have several protocols transmitting
requests to the Active Data Service because it is thread-safe. For example a RMI server
and a HTTP server can send requests to the same Active Data Service.

3.4.3 Command Line Tool
In addition to the Java API, Active Data offers a command line tool for interoperability.
The command line tool allow programs to publish transitions with a simple process call,
without having to write Java code.

Listing 3.12 shows the usage of the PublishTransition command; the first two
arguments are the host name or ip address and port of the Active Data Service; the
following two arguments are the class containing the LifeCycleModel of the transition
being published, and the name of the transition; the last two arguments are the SID
and UID of the life cycle to update. A last optional argument allows to publish a
composition transition, in which case the UID of the new token must be provided.

Listing 3.13 provides a full working example that publishes the transition applica-
tion.Transfer of the life cycle model on Figure 3.13.
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Figure 3.18: Data life cycle models for five data management systems.
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java -cp active_data_lib.jar
org.inria.activedata.examples.cmdline.PublishTransition
192.168.2.45
-m active_data_lib.jar org.louisaapp.application.Model
-t application.Transfer
-sid application
-uid 354632

Listing 3.13: Example of the command line tool for publishing a transition.

3.4.4 Systems Integration
We report now on the integration of Active Data with five widely used data management
systems. BitDew [71] is a middleware developed by Inria for easy data management on
various distributed infrastructures; it offers a programmable environment, a data sched-
uler and a reliable file transfer service. The inotify Linux kernel subsystem [157] allows
to watch a directory and receive events about the files it contains, such as creation, mod-
ification, write, movement and deletion. iRODS [68] is a rule-oriented data management
system developed at the DICE center at the University of North Carolina. iRODS pro-
vides a virtual data collections of distributed data, a metadata catalog and replication.
Globus Online [76] is a file transfer service developed at the Argonne National Labora-
tory, which offers researchers a fast, simple and reliable way to transfer large volumes
of data. Hadoop [81] is a project maintained by the Apache Software Foundation that
includes a widely used implementation of the MapReduce [80] programming model and
a distributed file system called HDFS [45].

When integrating Active Data into a legacy system, it is necessary to understand
how the system exposes its life cycle, in order to detect and convey life cycle transitions.
The main approach consists in relying on notifications provided by the system, and
publishing these notifications in terms of Active Data transitions. For instance, inotify
provides a notification service, which wakes up programs when files are altered on
the file system. inotify informs about the new state of the file, thus it is easy to
deduct the corresponding place, and publish the corresponding transition. When such
a notification service is not available, a second approach is to look at the internals of
the system. For instance, iRODS relies on a PostgreSQL database. We implemented a
trigger executed by the database each time a file is created or modified in iRODS. The
trigger acts as an Active Data proxy and forwards only relevant life cycle transitions
to the Active Data Service. A third approach is to deduce data-related events from a
system’s logs. In the case of Hadoop, for example, the submission, start and completion
of jobs and tasks is reported on the job tracker and task trackers logs. A lightweight
scraper is executed on every machine of the cluster, watches the logs and publishes the
corresponding transitions. Overall, we think there exist many sources of information to
obtain complete or partial representations of data life cycles in a non-intrusive fashion:
logs, email notifications, databases and so forth.

For each system, we have to represent its data life cycle model. Systems that expose
only partially their life cycle make this task intricate: this is the case for Globus On-
line and iRODS. As Globus Online source code is not available, we have an incomplete
knowledge of the file transfer life cycle. However, Globus Online emails the user upon
successful file transfer completion or failure. From this partial information, we recon-
struct the life cycle model presented in Figure 3.18d and enable Active Data users to
monitor Globus Online transfers. With iRODS, we do not need the whole iRODS data
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life cycle and chose to represent only the portion that is relevant to our application (see
the use-case presented in Subsection 4.2.4). This model is represented in Figure 3.18c.

Conversely, two data life cycles are complete: inotify, BitDew. Figure 3.18b presents
the inotify life cycle model constructed from its documentation.

Reading the source code of BitDew, we observe that data items are managed by
instances of the Data class, and this class has the status variable which holds the data
item state. Therefore, we simply deduce from the enumeration of the possible value of
status the set of corresponding places in the Petri Net (see Figure 3.18a). By further
analyzing the source code, we construct the model and summarize how high level DLCM
features are modelized using Active Data model:

Scheduling and replication Part of the complexity of the data life cycle in BitDew
comes from the Data Scheduler that places data on nodes. Whenever a data item is
placed on a node, a new replica is created. We represent replicas with a loop on the
Placed state that creates an additional token every time a token passes through it.

Fault tolerance Because one of BitDew’s target architectures is Desktop Grids, it
must deal with frequent faults, i.e. nodes going offline. When a data item is placed
on a node, and the node disappears from the system, it is marked with a Lost state
and will be placed on an other node. This is represented by the loop Placed, Lost,
ToPlace.

Composition of File Transfer and Data Scheduler In BitDew, the Data
Scheduler and File Transfer Service are closely related, and so are their life cycles. A
file transfer cannot exist without an associated data item, and a deleted data item
cannot be transferred. To connect the two Petri Nets we need to define the start and
stop places as explained in section 3.1.2.5. In BitDew, a new file transfer can be started
for a Data object in any state, except Terminated, Lost and Loop. To represent
this, we define all the places but the three mentioned above as start places and connect
them to the transfer life cycle model.

The life cycle model for Hadoop represents the life cycle of a file used as input for
a Hadoop MapReduce job. Because the input and output files of a Hadoop job are
stored in HDFS, the life cycle model of Hadoop is connected to the life cycle model
of HDFS. The life cycle model for Hadoop and HDFS presented on Figure 3.18e is
composed of two separate models; the one on the left represents the life cycle of a file
stored in HDFS with a coarse granularity (only one transition is included) because not
enough meaningful information can be extracted from the logs yet; the one on the right
represents the life cycle of a file during a Hadoop job. The Hadoop model features
transitions for job submission and termination, and map and reduce tasks submission,
distribution, launch and termination (Submit map, Assign map, Start map, End map
etc.). It also represents data transfers during the shuffle phase (transition Shuffle). A
second composition transition called Derive represents the production of one or several
output files in HDFS.

3.5 Conclusions
In this chapter, we have analyzed the requirements for a meta-model allowing to rep-
resent the life cycle of data in any distributed application. We presented a novel data-
centric meta-model with Petri Networks as a starting point and adding many specific
features and restrictions, such as tokens identification, life cycle composition and ter-
mination. From this meta-model, we introduced the Active Data programming model
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and runtime system. Active Data allows to represent a data life cycle model in a pro-
gram and use it for programming high-level applications to notify users, ease sharing,
perform optimisations and various tasks. Chapters 5 and 4 present examples of such
applications as well as performance evaluations.
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4
Evaluation

This chapter studies the prototype implementation of Active Data using
micro-benchmarks and synthetic use-case scenarios. Performance metrics will
evaluate key features, characterize the quality of the code, identify potential

bottlenecks and shed some light on what Active Data is currently suited for, and where
there is room for improvement.

4.1 Micro-Benchmarks
This section presents a set of micro-benchmarks that focus potential bottlenecks. The
centralized design of Active Data in particular may be a limiting factor for scaling the
system to big data workloads. For this reason, this first evaluation focuses on throughput
(the number of common operations the system can handle each second) and response
time (how fast the system responds to a common request). Another major concern of
users is whether Active Data will slow their systems down when it reports transition
publications in addition to normal operations. Last, we study how Active Data performs
with a large data sets and a common benchmark, Hadoop TeraSort.

The benchmarks are based on the version 0.1.2 of the prototype, and client-service
communications are implemented with Java RMI.

4.1.1 Experimental setup
Experiments in this section are run on the Griffon cluster of the Grid’5000 experimen-
tal testbed [158]. Grid’5000 is a large-scale testbed available to french researchers in
all areas of computer science but with a focus on distributed and parallel computing,
including cloud, HPC and big data. Griffon is part of the Nancy site; it is composed of
92 2-CPU nodes, each of which is an Intel Xeon L5420 with 4 cores running at 2.5Ghz.
Each node is equipped with 16GB of RAM and a 320GB Sata II hard drive. Nodes are
interconnected with Gigabit Ethernet and are running Linux 3.2.

All the benchmarks in this sections use the data life cycle model presented on Fig-
ure 4.1. The two transitions t2 and t3 arranged as a loop allow to publish as many
transitions as required by benchmark scenarios.
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Created t1 p1 t2 p2

t3t4Terminated

Figure 4.1: Data life cycle model used for the evaluations. It conveniently contains a
loop allowing an unlimited number of transition publications.

4.1.2 Transition Publication Throughput
As a first metric, we want to measure how many queries the Active Data Service can
serve under maximum stress. The query used in this benchmark is the publication of
transitions because it is the most frequently used, and as such it is the most likely
to create contention on the Service. Thus, throughput is measured as the number of
transition publications Active Data is able to handle per second. In order to stress
the system we run a single Active Data Service and a varying number of clients, each
running on a dedicated node. Each client creates and publishes a life cycle for the model
in Figure 4.1; then, they each publish 10,000 transitions for the life cycle, in a loop,
without pausing. Each second, the Service counts how many publish query it processed.

Figure 4.2 plots the average number of transitions processed per second against
the number of clients. There is a steady increase of the number of queries treated
per second between 10 and 100 clients. The Active Data Service seems to reach its
maximum capacity of 32,000 queries per second with 450 concurrent clients. Between
100 and 550 clients, the increase of the number of clients does not seem to have
a negative impact on the throughput of the Active Data Service. This result can
be explained by the fact that publishing a transition requires to lock several data
structures to safely update a LifeCycle object on the Service, and then requires to
create an event per subscribed client. For these reasons, publishing a transition is more
expensive than pulling events and querying a life cycle.

This metric is satisfying considering the centralized nature of the prototype imple-
mentation of Active Data. While its design could certainly be greatly improved by a
distributed implementation of the publish/subscribe layer, whether Active Data per-
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Figure 4.2: Average number of transitions handled by the Active Data Service per second
with a varying number of clients. Each client publishes 10,000 transitions without
pausing between iterations.
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Response time
med 90th centile std dev

Local 0.77 ms 0.81 ms 18.68 ms
Eth. 1.25 ms 1.45 ms 12.97 ms

Overhead Eth. w/o AD with AD
38.04 s 40.6 s (4.6%)

Table 4.1: Response time in milliseconds for life cycle creation and publication, transi-
tion publication and overhead measured using BitDew file transfers with and without
Active Data.

formances are sufficient depends on the requirements of a particular application. A
transition is published after some tasks was performed on a data item. In most sys-
tems, clients publish transitions at a pace much slower than in this benchmark, allowing
several hundred thousands of clients to publish transitions every few seconds or minutes.

4.1.3 Response Time and Overhead
We evaluate the average response time, i.e the time it takes for the service to satisfy
a client request. We pack two requests that are often performed together: create and
publish a new life cycle and publish a transition on that life cycle. In the same spirit,
we measure the overhead of publishing transitions on the client, i.e. the additional time
incurred by the Active Data runtime environment. As we need an ordinary application
to measure its overhead, we use the BitDew file transfer operation; this operation has the
interesting feature of regularly publishing an “in progress” transition. The experiment
consists in creating and uploading 1,000 1KB files in a single burst to stress the system.
When Active Data is enabled, more than 6,000 transitions are published during the
files’ transfer. The execution time is recorded with and without Active Data.

Table 4.1 shows the median, 90th centile and standard deviation for the response
time in milliseconds, when the service and the client run on the same machine (local)
and on two different machines (Ether). The overhead is given in seconds and as a
percentage compared with the vanilla BitDew. We observe that the response time is in
the order of the millisecond, with a remarkable stability. The overhead, even when the
system is highly stressed, remains less than 5%.

All together, these experiments demonstrate that the prototype implementation
performs well enough to provide reactivity and scalability, and is fully able to handle
the case studies presented in the next section as well as complex real-life experiments
such as the one presented in the next chapter.

4.1.4 Hadoop Benchmarks
To complete the performance evaluation presented in the last subsection, we evaluate
Active Data’s performances against a real life workload. To this end we use the life
cycle model of files in HDFS and Hadoop and run an intensive sorting benchmark on
a 1TB data set. Active Data must be able to handle the many transition publications
induced by the map and reduce tasks.

We execute the Terasort benchmark on the Suno cluster located at the Sophia site
of Grid’5000. Suno has 45 nodes, each having two 4-core Intel Xeon E5520 CPUs
running at 2.26GHz, 32GB of memory and two 300GB hard drives. The nodes are
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interconnected with gigabyte ethernet. We run the Active Data Service alone on one
node and we setup Hadoop to run a mapper or reducer on every core of the remaining
nodes. Thus on this setup we run 280 mappers and we decide to run 70 reducers.
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Figure 4.3: Number of transitions published each second during the Hadoop Terasort
execution.

The Terasort benchmark runs in two phases: a random data set is generated by
a first job called Teragen that we do not monitor, then the actual Terasort job is
executed to sort it. The Active Data Service records how many transition publications
it performs every second, like in the last subsection. Figure 4.3 plots the resulting
data; after a peak during the first few seconds of the job, the number of transitions per
second is relatively low as map and reduce tasks progress. The first peak is due to the
many Submit map, Submit reduce, Assign map and Assign reduce transitions that are
published in a burst when the job tracker starts the job and partitions the workload.
During this first peak, a maximum of 196 transitions per second is recorded. After
this, transitions are published at a much slower pace of 3 per second on average with a
standard deviation of only 5, as map and reduce tasks complete.

This benchmark confirms our intuition that the 32,000 transitions per seconds limit
gives enough margin to handle real-life applications like sorting 1TB of data with
Hadoop.

4.2 Scenarios
We conduct four case studies to evaluate the ability of the Active Data programming
model to deal with complex data management scenarios. These case studies present
problems that we express in terms of transitions in the life cycle. Further, we define four
criteria for evaluating the fitness of Active Data for common application requirements.

• Active Data allows to write distributed applications based on data life cycle tran-
sitions. In the first example, we show how to implement a storage cache between
an application and the remote Cloud storage Amazon S3. We present the cache
policy and describe its implementation based on transitions published during file
transfers. This experiment shows that a simple cache, programmed in few dozen
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lines of codes can effectively both improve performances and decrease Cloud usage
costs.

• Active Data can model data life cycle in existing systems and allows programmers
to manage data sets distributed across systems or infrastructures. To illustrate
this, we present how to create a life cycle model for the Linux Kernel extension
inotify which notifies applications of local filesystem modifications. Active Data
allows applications to receive inotify notifications through its unique API and to
integrate them in the whole application’s data life cycle model. We present a
case study fairly usual in big data science, where a set of sensors coordinates to
implement data acquisition throttling, pre-processing to reduce the data size and
archiving to a remote storage site. This scenario implies coordination between a
set of local storage; a scenario difficult to achieve using ad-hoc scripting solutions.

• Active Data allows to react to dynamic data change, such as a data set that dy-
namically grows, shrinks or gets partly modified. We show that Active Data can
optimize systems that do not fully take into account the life cycle of data. In the
third use case, we present an incremental MapReduce that leverages the Active
Data model to handle dynamic data. We modify an existing MapReduce imple-
mentation [159] so that it incrementally updates the result of a MapReduce job
when a subset of the input data is modified.

• Active Data can expose to the programmer a single data life cycle, even if data
items are managed by several heterogeneous systems. The last scenario presents
the construction of a unified life cycle model based on the composition of two
different systems: iRods and the Globus data transfer service. Thanks to this
model and its ability to reconciliate data identifiers, we present an application
which automatically keeps track of data items provenance when they move from
one system to the other.

We evaluate the uses-cases against four criteria that are representative of the systems
and application class we support:

• The unique high-level view of data life cycles offered by Active Data must allow
users to implement cross-system optimizations;

• The global namespace maintained by Active Data must allow to integrate in the
same scope data objects from several non-cooperative systems;

• The programming model must allow to program distributed data life cycle man-
agement tasks easily, benefiting from implicit parallelism;

• The event driven model must allow to program applications able to react to chang-
ing data.

4.2.1 Storage Cache
This scenario demonstrates the ability and the easiness to program distributed applica-
tions with Active Data. To this end, we study the case of implementing a storage cache
between a computing infrastructure and a storage backend in terms of data life cycle
transitions. Storage caches are widely used by scientific applications to minimize cost,
network bandwidth, latency and energy consumption.
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Figure 4.4: Life cycle model of BitDew’s file transfer module. Subscribing transition
handlers on some transitions allows us to dynamically manipulate file transfers in Bit-
Dew and implement a write-through cache.

This scenario involves BitDew, which was introduced in Section 3.4.4. BitDew
offers a programmable environment and a set of services including the “data repository”,
the “data scheduler” and the “data transfer” services. The data scheduler performs
data placement on a set of nodes according to high-level constraints; the data transfer
service offers a unique asynchronous transfer API for various transfer protocols such as
HTTP, FTP, GridFTP and Bittorrent.

In this scenario, we consider a cache between a computer infrastructure and the
Amazon Simple Storage Service [160] (S3). S3 users pay according to the storage space
they use, the number of put and get requests they perform and the amount of data
they transfer from and to the S3 storage. Caching S3 avoids unnecessary data transfers
to and from S3 which both improves the performances of applications accessing S3
data and decreases the S3 usage cost. To function properly, the cache application has
to determine when data are present or not in the cache and perform the necessary
file transfers accordingly. In terms of data life cycle this translates in reacting to file
transfer events, i.e. when a file transfer starts or ends. Our implementation relies on
the life cycle model of BitDew data transfer service. The life cycle model, connected to
Active Data by instrumenting the code of the BitDew file transfer model is presented
on Figure 4.4.

The now Active Data-enabled BitDew takes the place of the ordinary BitDew in
the application, acting as main memory. Clients are connected to the cache application
that runs on a local server node and that uses a fixed portion of its local storage to
cache remote files. The cache is also a client of the Amazon S3 platform. Because we
assume that the cache can possibly fail, we implement a write-through cache policy; this
policy allows to have a durable copy of each file written to the cache, while allowing
to save bandwidth on read operations. We express the cache application with only two
transitions of the BitDew transfer life cycle model:

• t1 (a transfer begins) is subscribed by the cache. The handler examines the transfer
object that corresponds to the token; if it detects that the transfer is a get from
the cache, it checks if the file corresponding to the data item is in the cache. If it
is (cache hit), the handler serves it from the cache; if the file is not in the cache
(cache miss), the handler downloads it from Amazon S3 and then serves the file
from the cache.
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w cache w/o cache Difference
In 2350 MB 2350 MB 0 MB
Out 0.15 MB 1976.17 MB 1976.02 MB
#Put 13 13 0
#Get 0 20 20
Cost in USD 0.3 0.53 0.23

Table 4.2: Cache experiment evaluation results: using the simple write-through cache
saved 1.9 GB of transfer and cut down the cost of Amazon S3 by 43%.

• t9 (a transfer ends) is subscribed by the cache as well. If the handler detects that
the token corresponds to a put in the cache, it transfers the same data item to
Amazon S3 (hence the “write-through” policy); local file can be deleted from the
cache according to various eviction policies.

We evaluate the cache with a scenario which mimics a master/worker computation
that is fairly common to scientific applications. The scenario involves 10 clients, a 5GB
cache server and Amazon S3. The master first transfers three files to the Amazon S3:
a 200MB executable to be run by all client nodes and 2 input data-sets of 50MB and
100MB. Once the files are available in Amazon S3 for the clients, each client down-
loads the program. Half of the clients download the smallest data set while the others
download the largest. Table 4.2 shows that during this short experiment, using the
storage cache avoided performing 1.9 GB of unnecessary data transfers from Amazon
S3, cutting the cost of the service by 43%.

This scenario illustrates the ability to rapidly prototype data management appli-
cations with Active Data: the source code is less than 100 lines of code and can be
developed in a day. The resulting cache can benefit any application that uses BitDew
with no code modification. It is distributed and yet requires no synchronization, no
thread spawning and no forking.

4.2.2 Collaborative Sensor Network
This case study illustrates: i) the adaptability to legacy data management systems, ii)
the ability to develop distributed applications that support independent data life cycles
distributed over several local systems and iii) how easy it is to implement coordination
between distributed nodes with Active Data.

It is a common practice for applications acquiring data—for example from a
scientific instrument or a sensor network—to apply some pre-processing before pushing
it to a computing platform, and archived. Pre-processing can be used to filter,
compress data or remove invalid data. Such a sequence of operations can easily
be—and is often—scripted using ad-hoc languages or programs. Data throttling is also
a common practice to reduce the amount of data injected in a system at a given time.
Decentralized data throttling enables to reduce the load on the system by dropping
data before they are injected. However, it requires coordination between multiple
sensors, which can be tricky in systems composed of many nodes distributed on
multiple infrastructures. This scenario demonstrate that decentralized data throttling
can be achieved simply when expressed with Active Data.
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Figure 4.5: Data life cycle model for inotify. The life cycle model represents common
operations that can be performed on files and reported by inotify.

We consider a system where large high-resolution images are acquired from a network
of cameras, each connected to its own pre-processing node. Images are regularly written
on these nodes’ filesystems in the TIFF format. The images are large, so each node must
independently perform some pre-processing to compress them in the JPEG format. The
resulting JPEG files are then transferred to a distributed storage system where they will
be available for further processing. In addition to this, we want the nodes to perform
decentralized data throttling: they must drop TIFF images received from their camera
if the global number of images pre-processed p during a defined time window w in
seconds reaches a threshold n.

As soon as a camera writes an image file on a node’s filesystem, it is considered as
a newly created data item and its life cycle begins. To capture life cycle transitions on
files, we use the inotify Linux kernel subsystem. Inotify allows to watch a directory and
receive events about the files it contains. Events regard file creations, modifications,
writes, movements and deletions. As inotify events represent filesystem events, and
filesystems contain data (files) that are subject to transitions, we can represent the
life cycle model of files from the perspective of inotify. Figure 4.5 presents the inotify
data life cycle model, constructed from the official documentation. The combination
of Active Data and inotify creates a distributed inotify : all nodes can now coordinate
based on transitions happening on other nodes’ filesystems. Nodes locally run a small
daemon program that reads inotify events from their Linux kernel and publishes the
corresponding life cycle transition to Active Data.

With sensor nodes able to react to remote filesystem transitions, we can express our
problem in terms of life cycle transitions. Each node independently runs a program
that subscribes handlers to two inotify transitions:

• t12: the handler checks if the transition is local or remote: if it is remote and if
the associated file is a JPEG image, then a TIFF image has been pre-processed
on a remote sensor and the handler increments its local counter p.

• t5: if the transition is local, the handler checks the associated file type: if it is
TIFF, the handler pre-process the file only if p < n; otherwise, the file is removed.

Thus the way the algorithm work is by having on each node a handler maintaining
p, the number of images converted in the current time period. Nodes have only a local
copy of the variable p; by reacting to image conversions happening on other nodes,
they try to keep their value p up to date. This is obviously a best-effort situation where
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Figure 4.6: Collaborative network of 10 sensors: the x axis plots the time in seconds,
for a window size w = 30 seconds.

the “pull frequency” discussed in Subsection 3.3.2 has an effect on the accuracy of p:
reducing significantly the pull frequency will allow each local variable p to be closer to
the actual number of images converted in the current time period. In this particular
application, we decide that a small error is acceptable and will not prevent the data
throttling to fulfill its mission. In addition, each node sets p to 0 every w seconds in
order to start a new time period.

We implement and evaluate a simple scenario with 10 machines, each randomly
downloading 5 TIFF images (between 121MB and 502MB) in a watched directory. We
implement and configure the transition handlers for n = 3 and w = 30 seconds. The
pull frequency is set to 1,000 ms: the Active Data client queries the service for events
every second.

Figure 4.6 presents the Gantt chart of the scenario which lasts 279 seconds; each
numbered pair of lines represent the activity of one sensor. Red bars plot data acqui-
sition times, yellow bars plot data pre-processing and green bars plot the upload time
of pre-processed files. On each sensor, data acquisition and pre-processing and upload
are effectively performed in parallel. We see that the system behaves as expected: for
example in the time window [60,90], 8 new JPEG images are downloaded on the nodes,
but only 3 are pre-processed; the other images are dropped.

This scenario illustrates a powerful feature: Active Data can easily turn into a
distributed system, any local system that is able to expose its local data life cycle. It
also demonstrates the ease with which distributed data life cycle management tasks can
be expressed with Active Data.

4.2.3 Incremental MapReduce
In this case study, we investigate how an existing system can be optimized by leveraging
on Active Data’s ability to cope with dynamic data.

One of the strongest limitations of the MapReduce programming model is its
inefficiency to handle mutating data; when a MapReduce job is run several times and
only a subset of its input data set has changed between two job executions, all map and
reduce tasks must be run again. Making MapReduce incremental, i.e. re-run map and
reduce tasks only for the data input chunks that have changed, necessitates to modify
the complex data flow of MapReduce. However, if a classical MapReduce framework
becomes aware of the life cycle of the data involved, it may be able to dynamically
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adapt its computation to data modification.

We consider the MapReduce implementation built on top of the Active Date-enabled
BitDew storage system [159]. In this implementation, the BitDew instance has 3 types of
clients: a master node that places input data chunks in the BitDew storage and launches
a MapReduce execution and; mappers and reducers that execute map and reduce tasks
respectively. However, input data can be updated directly in the storage by external
applications. To make this MapReduce implementation incremental, we simply add
a “dirty” tag to the tokens representing certain data chunks. When a chunk’s token
is tagged as dirty, the mapper that previously mapped the chunk executes again the
map task on the new chunk content and sends the updated intermediate results to the
reducers. Otherwise, the mapper returns the intermediate data previously memoized.
Reducers proceed as usual to compute again the final result. To update the chunk dirty
state, we need the master and the mappers to react to transitions in the life cycle of
the chunks. More precisely, nodes subscribe to two transitions published by BitDew
transfers with the life cycle model from Figure 4.4:

• t3 is subscribed by the master node. After this transition is published, the handler
on the master node checks whether the transfer is local and whether it modifies
an input chunk. Such case happens when the master puts all the data chunks in
BitDew’s storage system before launching the job. If both conditions are true, the
transition handler tags the corresponding token as dirty;

• t1 is subscribed by all the mappers. When this transition is published, handlers
on the mappers check whether the transfer is distant and is overwriting one of
their chunks. In this case, the transition handler on the mapper marks the token
as dirty.

In addition, the mapper implementation is modified to run or not to run the map
method according to the presence of the dirty tag on the chunk’s token.

To evaluate the performance of the incremental MapReduce, we compare the time
to process the full data set with the time to update the result after modifying a part
of the data set. The experiment is configured as follows; the benchmark is the word
count application running with 10 mappers and 5 reducers; the data set is 3.2 GB
split in 200 chunks. Table 4.3 presents the time to update the result with respect to
the original computation time when a varying fraction of the data set is modified. As
expected, the less the data set is modified, the less time it takes to update the result:
it takes 27% of the original computation time to update the result when 20% of the
data chunks are modified. However, there is an overhead due to the fact that the
shuffle and the reduce phase are fully executed in our implementation. In addition,
the modified chunks are not evenly distributed amongst the nodes, which provokes a
load imbalance. Further optimizations would possibly decrease the overhead but would
require significant modification of the MapReduce runtime. However, thanks to Active
Data, we demonstrate that we can reach significant speedup with a patch that impacts
less than 2% of the BitDew MapReduce runtime source code.

4.2.4 Data Provenance
We have discussed in Chapter 2 how reconstructing provenance is difficult in the gen-
eral case; it is in fact even more challenging in applications that involve multiple non-
collaborative systems. Some systems may be provenance-aware, others may not. In such
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Fraction modified 20% 40% 60% 80%
Update time 27% 49% 71% 94%

Table 4.3: Incremental MapReduce: time to update the result compared with the frac-
tion of the data set modified.
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Figure 4.7: Life cycle models of transfers in Globus and files in iRODS. The two mod-
els are connected with a composition transition; the composition transition may be
published only if the Globus transfer is successful.

cases, only an entity with a exhaustive view of the whole application can reconstruct
the provenance of generated data. Active Data’s unique high-level and end-to-end view
of data life cycles offers the exhaustive view we need. Thanks to Active Data’s ability
to react to all life cycle transitions, users are able to reconstruct provenance from the
sequence of operations applied to data sets across loosely coupled systems distributed
on any computing infrastructure.

Here we consider a scenario where Active Data receives events regarding data that
evolve in two completely independent systems. To mimic cooperation of data man-
agement systems within data centric infrastructures, our scenario features one service
to handle file transfers (Globus Online) and one software to store data and provide a
metadata catalog (iRODS).

In our scenario, for any data file in iRODS, we want to record file transfer prove-
nance: the transfer endpoints, start and completion times and possible transfer failures.
This scenario illustrates two difficulties; the first difficulty to access all copies and all
metadata of a single data element distributed in several systems, with several identifiers;
the second difficulty is that Globus Online is a SaaS and we access it remotely; we have
no access to its source code and we are not aware of the full internal data life cycle it
creates.

Active Data is the glue that enables both Globus and iRODS to see the part of
data life cycles that is outside their scope. We use iRODS’s user-defined metadata to
record provenance information along with data files.

Figure 4.7 represents the life cycles of data in Globus and iRODS. When a Globus file
transfer starts, Globus creates a transfer task and returns its Task Id. The user creates
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a data life cycle with this task id and waits for the transfer to complete. When a transfer
completes, Globus sends a notification back to the user, containing “SUCCEEDED” if
the transfer was successful or “FAILED” otherwise. Depending on this email notification,
either the transition t1 or t2 is published to reflect the state of the transfer. A token
on iRODS’s Created place is the equivalent of a “touch”: an empty file is created
and a data structure is allocated in iRODS backend database. The iPut transition is
named after an iRODS command that stores a file in iRODS data repository. More iput
operations trigger the Write transition and iget commands trigger the Read transition.
iRm is the transition that corresponds to the iRODS command for removing a file.

To compose the two life cycles, the place Succeeded from Globus is a start place
which creates a token in the iRODS life cycle model. The reception of a “success” email
notification causes transition t1 to be triggered, and a handler to store the file in iRODS.
iRODS returns an identifier called DATA_ID that is added to the token; it now contains
both identifiers.

A second transition handler is attached to iRODS’s creation transition: it is executed
when any iRODS data is created. This handler requests the life cycle from the Active
Data Service to see if it contains a Globus identifier. In such case, it queries the Globus
REST API to get file transfer information.

To demonstrate our solution, file transfers are launched from a remote Globus end-
point to a local temporary storage every few seconds. We observe that when a transfer
ends, it appears immediately in the iRODS data catalog with the correct Globus Task
Id and meta-data information (endpoint, completion date, request time). Listing 4.1
shows the metadata set for one of these iRODS files after the transfer is done.

$ imeta ls -d test/out_test_4628
AVUs defined for dataObj test/out_test_4628:
attribute: GO_FAULTS
value: 0
----
attribute: GO_COMPLETION_TIME
value: 2013 -03 -21 19:28:41Z
----
attribute: GO_REQUEST_TIME
value: 2013 -03 -21 19:28:17Z
----
attribute: GO_TASK_ID
value: 7b9e02c4 -925d-11e2 -97ce -123139404 f2e
----
attribute: GO_SOURCE
value: go#ep1 /~/ test
----
attribute: GO_DESTINATION
value: asimonet#fraise /~/ out_test_4628

Listing 4.1: Metadata associated to an iRODS data file transferred with Globus

The global and unique namespace provided by Active Data of data sets over het-
erogeneous and non-cooperative systems significantly simplifies the challenge of global
provenance reconstruction. In addition, we have demonstrated that systems can be
extended to do more, thanks to the information from outside their scope provided by
Active Data.
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4.3 Conclusions
This evaluation brings four main contributions to Active Data’s prototype implemen-
tation. First, it demonstrates that despite its early development stage, Active Data
can support the workloads that are found in common distributed scientific applications.
Second, the use-cases show that the programming model is expressive enough to pro-
gram common data management tasks and optimizations. Third, they demonstrate
how Active Data can optimize existing systems by extending their scope, with mini-
mal change. Fourth, the use-cases can be used by users as examples of how to start
programming with Active Data.
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5
A Framework for Data
Surveillance Based on
Active Data

The Advanced Photon Source (APS) is a research project that includes sev-
eral large-scale material physics experiments. They generate and handle very
large data sets, and involve several systems and software. This Chapter de-

scribes the development of a data surveillance framework for a particular experiment;
the framework offers a unique combination of features: ability to monitor heteroge-
neous systems and distributed infrastructures, user notifications through plugins (e.g.,
Twitter), automated data tagging and ability to convey tags across systems, data filter-
ing and rule-based programming. We demonstrate the benefit of this data surveillance
system by implementing a prototype based on the Active Data.

5.1 Background
We study a particular e-Science experiment conducted at the Advanced Photon
Source [161], a research facility featuring a synchrotron-radiation light source for ma-
terial physics, biological science, environmental, geophysical and planetary science. It
is located at Argonne National Lab, in Illinois. The application we study is part of a
materials science experiment that generates up to 1TB of data per day that must be
moved, cataloged, and analyzed to satisfy user needs.

5.1.1 The APS Experiment
The materials science experiment that we consider is conducted at an APS beamline
that is used to analyze different sample materials using synchrotron x-rays. Scientists
apply techniques such as high-energy diffraction microscopy (HEDM) and combined
high-energy small and wide-angle x-ray scattering (HE-SAXS/WAXS) to characterize
different samples. The end-to-end process of the particular experiment we consider,
shown in Figure 5.1, is both compute and data intensive, using thousands of cores to
enable near-real-time analysis of data as it is acquired. This rapid analysis permits
immediate feedback so that experiment parameters can be adjusted immediately. Ex-
periments at the beamline currently generate 3-5TB of data per week.
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Figure 5.1: The Advanced Photon Source experiment

Data is obtained from a beamline detector with a direct connection to an acquisition
machine. This acquisition machine runs proprietary detector software and contains
modest storage and compute resources. As data is acquired, it is moved from the
acquisition machine to a larger shared cluster with greater storage capacity. While this
step is currently performed out of band, in the near future it will be replaced with
automated Globus transfers.

After transfer to the shared cluster, data is processed with several data reduction and
aggregation scripts (e.g., refinement operations and calculation of stresses and strains
for individual grains). As there may be many files related to a particular experiment
or sample within that experiment, files are grouped into data sets. The data is then
cataloged in the Globus Catalog. Here automated python-based parsers are used to
extract metadata, for example related to the user, experiment, and sample. Knowledge
of the Nexus HDF format is used to extract structured metadata from the file. The
catalog associates various different raw and derived data, scripts, and metadata into
self-contained data sets.

Following cataloging, data is moved to large scale compute resources. Here a parallel
Swift-based analysis pipeline is run to fit a crystal structure to the observed image. This
processes is computationally intensive and involves iterative processing of many rows
using a C function on each parameter and a reduction phase to merge the results into
a single output. Throughout the analysis provenance information is recorded in the
Catalog and associated with the sample data set.

5.1.2 Workflow Tools
While not a complete list of tools used in this process, the following are the core tools
that act upon data.

Globus Online provides high performance, secure, third party data transfer and
synchronization. Operated as Software-as-a-Service, Globus Online enables researchers
to manage large data transfers between “endpoints” via a web interface or REST API.
Globus Online handles all the difficult aspects of data transfer allowing a user to start
an asynchronous data transfer, while tuning parameters to maximize bandwidth usage,
managing security configurations, providing automatic fault recovery, and notifying
users of completion and errors. Globus Online also allows researchers to share large
data sets from their usual storage repositories.

Globus Catalog is a service that enables the creation and management of user-
defined “catalogs” that contain data sets and references to associated data and metadata.
Within a catalog, users can create data sets, associate data members (files and direc-
tories), and specify user-defined metadata in the form of key-value annotations. Data
sets are logical collections of, potentially distributed data. Globus Catalog defines a
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schemaless metadata model in which arbitrary metadata can be attached to data sets
or data members. Globus Catalog’s query interfaces allow users to discover and retrieve
data sets based on their annotations.

Swift is a parallel scripting language designed for composing applications into work-
flows that can be executed in parallel on multicore processors, clusters, grids, clouds
and supercomputers. Swift focuses on orchestrating independent and distributed tasks
across distributed computing systems. Swift uses a low level C-like scripting model.
Swift is implicitly parallel: users do not explicitly fork and join processes; they do not
program their workflows to be parallel or to handle synchronization, file transfer, and
do not explicitly chose execution locations.

5.2 Objectives
While the APS use case currently satisfies the needs of its users, there is potential
for significant inefficiency, unreported failures and even errors due to the complexity
of dealing with several terabytes of data and a number of different tools and systems.
Here we present four useful features desired by scientists. These features appear simple
at small scales and when executed on a single machine, however with large distributed
data sets they present significant challenges to users.

5.2.1 Progress Monitoring
Mechanisms are required to monitor the entire workflow from a high level, generate
reports on progress, and identify potential errors without examining every data set and
log file. Monitoring is not limited to estimating completion time, but also: i) receiving
a single relevant notification when several related events occurred in different systems;
ii) quickly noticing that an operation failed within the mass of operations that completed
normally; iii) identifying steps that take longer to run than usual, backtracking the
chain of causality, fixing the problem at runtime and optimizing the workflow for future
executions; iv) accelerating data sharing with the community by pushing notifications
to collaborators.

5.2.2 Automation
The APS experiment, like many scientific experiments and workflows, requires explicit
human interventions to make data progress between stages and to recover from unex-
pected events. Such interventions include running scripts on generated data sets on the
shared cluster, registering data sets in the Globus catalog, and executing Swift analysis
scripts on the compute cluster. Such interventions cannot be easily integrated in a tra-
ditional workflow system, because they reside a level of abstraction above the workflow
system. In fact, they are the operations that start the workflow systems. Because the
code to automate them would need to have a high-level view similar to that of the
human operator, they are performed by a human operator.

5.2.3 Sharing and Notification
As a result of analysis, numerous files are produced and registered in the Globus catalog,
many of which may be valuable to the community. Sharing these files can be made
more efficient by allowing other scientists to be notified of events (e.g., new data sets
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Figure 5.2: Data surveillance framework design

available in the catalog) with powerful filters to extract only the notifications they need,
and even to start processes as soon as files are available. We believe the best way for
scientists to automatically integrate new data sets in their workflows is to rely on widely
used dissemination mechanisms—such as Twitter. Twitter is an efficient asynchronous
notification mechanism that is commonly used by scientists. It also can be simply
integrated via its APIs that enable straightforward integration with external systems.

5.2.4 Error Discovery and Recovery
Each system participating in the APS experiment has only a partial picture of the entire
process, which impairs the ability to recover from unexpected events. Thus, when such
events occur, systems often fail ungracefully, leaving the scientists as the only one able
to resolve the problem through costly manipulations. For example, if a Swift script
fails when processing a file, it simply reports the error in a log file and returns. Later,
when inspecting output files, a scientist may see that some results are missing; they
will read the log and discover the faulty file; a quick look at the file will tell them it
was corrupted and their only measure will be to again transfer the file to the computing
cluster and re-start the analysis. This requirement for low level human intervention and
manipulation delays experiment completion, places a burden on scientists and wastes
valuable computing resources. Moreover, such approaches are also prone to human
error. Automating these steps would improve each of these aspects.

5.3 System Design
This section presents the data surveillance framework designed to satisfy the APS users’
needs presented above.

5.3.1 Data Surveillance Framework
Figure 5.2 shows the main features of the data surveillance framework; the framework
is able to track any data object (such as files and data sets) as well as elements related
to data (such as file transfers and metadata). The framework receives events from
different systems and integrates the identifiers of data and related elements in a single
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Figure 5.3: The life cycle model for the APS experiment comprises three main systems
(Globus transfers, Globus Catalog, and Swift) as well as intermediate storage. Data and
information transfers between systems are represented with red composition transitions.

global namespace. Data replicas and their current state are exposed as tokens in a
unified namespace used across systems. Tokens provide a model for linking together
related data in the different systems. Arbitrary tags can be associated with tokens to
add additional information. Tokens can be tagged automatically by the framework,
or manually added by users. Tags are used to pass information amongst the different
systems, and to implement conditional behaviors based on the current state of data.
From the user’s perspective, the “state of data” is both the distributed state of all
the replicas of a data item, and additional state information attached as tags. The
framework allows users to be notified of the progress of their data and to automatically
run custom code at many operational stages of the life cycle. Additionally, tags are
used to filter tokens and trigger notifications and code execution on a subset of events,
according to user choice.

5.3.2 Active Data
The complexity of implementing the surveillance framework comes from a lack of integra-
tion, impairing tight coordination between loosely coupled systems. Such coordination
is challenging because, in order to be efficient, it must be as noninvasive as possible.
Additional challenges stem from the lack of feedback derived from the systems, that are
mostly regarded as black boxes from the user perspective.

We use Active Data’s life cycle model to individually represent and expose the
internal life cycle of the three APS systems: Globus Online, Globus Catalog and Swift.
Then, we use Active Data’s composition ability to represent how data moves between
them.

5.3.3 APS Experiment Life Cycle Model
We now present the life cycle model of data in the APS experiment. We first represent
each system independently, and then compose the system models together to model the
whole experiment.
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The complete model, shown in Figure 5.3, is divided into six parts, separated by
composition transitions. On the left, we represent the detector with a minimal life
cycle, that is a Created and a Terminated place, with a unique transition between
them; the detector’s Created place is connected to the life cycle of a Globus transfer
with a composition transition that represents the moment when Active Data records
the identifier in the destination system (Globus Online) and maps it to the identifier in
the source system (the detector).

In the Globus Online model, a token represents a transfer task containing a directory
tree with several files. A transfer task can succeed or fail. In the case of success only, a
new composition transition can create a token in the shared storage.

The shared storage is also a minimal life cycle. From there, two things happen:
a Python script registers each directory in the completed transfer as a data set in
the Globus Catalog and annotates it with metadata extracted from the files; another
Globus transfer copies each data set to a computing platform for analysis. The order in
which these two stages happen does not matter in the model; the order in which both
transitions are triggered simply indicates which happened first.

On the Globus Catalog model, metadata can be added to a data set one by one,
and all metadata can be removed at once. On the Globus transfer model, a transfer can
succeed or fail. If the transfer succeeds, the Start Swift composition transition maps
the Globus task identifier to the identifier (path) of each file contained in the data set.
These files are used as input to the Swift script, that will in turn produce an output file.
Swift features a self composition: each input file is naturally linked to the output file
it produced by the Derive transition. An error in the Swift script results in the output
file not being created and the Failure transition being triggered.

5.3.4 Event Capture
Having represented the entire model with Active Data, we now describe how informa-
tion from an execution of the APS experiment is mapped to the model. This translates
to creating a token in the model for every file, transfer and data set manipulated, and
then publishing the right life cycle transition to Active Data.

To collect runtime information and translate it to life cycle transitions, we use some
of the techniques presented in Subsection 3.3.6.

1) Detector : as the first transfer from the detector is started manually, the pub-
lication of the Start transfer transition is also done manually, with an Active Data
command line tool.

2) Globus transfers: we developed a simple Java program that uses a Globus REST
API query for completed transfers every 30 seconds, examines the transfer status (suc-
cess or failure), and publishes the corresponding transition.

3) Shared storage: on the shared storage, every action is currently performed man-
ually. To publish the transition Shared storage.Extract, we modified the Python ex-
traction script to call the Active Data command line tool before exiting. The Globus
transfer is started manually, so the publication of the second Globus transfer is also
performed manually from the command line.

4) Globus Catalog : similar to the REST API for transfers, the Catalog allows infor-
mation about all data sets for a given user to be retrieved. In this case we developed
a Python script that queries the last modification time of each data set, and publishes
the Globus Catalog.Update transition for data sets that have been modified since their
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Tagger t = new Tagger () {
public void tag(Transition transition , Token[] inTokens , Token [] outTokens , ↘

→Token [] newTokens) {
String filename = newTokens [0]. getUid ();

if(filename.endsWith(".hdf")
newTokens [0]. addTag("hdf");

}
};

Listing 5.1: Example of tagger attached to transition Shared storage.Start transfer.

last recorded modification time.
5) Swift : while running, Swift writes information about intermediary input and

output files to a log file. By parsing the log file while Swift is running with a Python
script, we are able to publish the Swift.Error transition when a task fails, and to publish
the Swift.Derive transition when a task produces an output file from an input file.

Following the principles of Active Data, the methods for instrumenting the three
systems—Globus transfers, Globus Catalog and Swift—are completely non-intrusive
and reusable. The individual life cycle models and the scripts we have developed can
be used independently from the rest of this work by scientists wanting to make their
tools and workflows “Active Data-enabled.”

5.3.5 Tagging
To make tokens more useful to users, we attach relevant information to them using
Active Data’s tag features. We mostly employ taggers for their advantage of tagging
tokens on the Active Data Service, without requiring user intervention. This guarantees
that tokens that must be tagged cannot be missed by potential user-side defects.

Table 5.1 describes the tags used in the APS experiment. Listing 5.1 shows an
example of a tagger attached to transition Shared storage.Start transfer. Here the tagger
examines the identifier of the token created by the composition transition (the only
element in newTokens) and adds a tag to the token according to the file extension
(the actual code considers more file types). Despite this tag being added in the shared
storage, it will be propagated to subsequent systems (e.g., Swift).

Transition Tags
Detector.Start transfer Detector name
Globus transfer.End transfer Data set name
Shared storage.Start transfer File type
Globus transfer.Start Swift “swift-input”
Swift.Initialize Program name
Swift.Derive “swift-output”

Table 5.1: APS life cycle transitions and corresponding tags.

5.4 Results
To evaluate our data surveillance framework we demonstrate the ease by which the four
desired end user features described in section 5.2 (monitoring, automation, notification,
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and error recovery) can be provided using Active Data.

5.4.1 Monitoring Progress
We demonstrate the ability to monitor progress by observing all systems in the exper-
iment at the same time. To this end, a line of text is recorded in a file every time a
data set received from the detector is fully processed by Swift, i.e. passes through the
entire experiment workflow. In order to generate this line of text correctly, the writer
needs to know how many files are contained in each data set, what data set a file be-
longs to, and how many files from each data set Swift has processed. This capability
is achieved by running a single transition handler when files are transferred from the
detector (transition Detector.Start transfer) and when Swift derives an output file from
an input file (transition Swift.Derive).

ActiveDataClient ad = ActiveDataClient.getInstance ();

TransitionHandler handler = new TransitionHandler () {
private Map <String , int > datasetSize;
private Map <String , int > datasetTreated;

public void handler(Transition t, boolean isLocal , Token[] inTokens , ↘
→Token [] outTokens) {
String datasetId = "";

// Count total number of files in the data set
if(t.equals("Detector.Start transfer")) {

datasetId = inTokens [0]. getUid ();
int size = new File(datasetId).listFiles ().length;
datasetSize.set(datasetId , size);

}

// Count number of treated files in the data set so far
if(t.equals("Swift.Derive")) {

LifeCycle lc = ad.getLifeCycle(inTokens [0]);
datasetId = lc.getTokens("Detector.Created")[0]. getUid ();
datasetTreated.set(datasetId , datasetTreated.get(datasetId) + 1);

}

// If done , update file
if(datasetSize.get(datasetId) == datasetTreated.get(datasetId)) {

FileOutputStream out = new FileOutputStream("~/aps.log");
out.write("Done: " + datasetId);
out.close();

}
}

};

ad.subscribeTo("Detector.Start transfer", handler);
ad.subscribeTo("Swift.Derive", handler);

Listing 5.2: Monitoring the progress of the experiment life cycle: a log file is
automatically updated each time a data set has been entirely processed by a Swift
script.

The handler code is presented in Listing 5.2. The code keeps two counters for each
data set, recording how many files it contains, and how many have been processed. If
the event that triggered the execution was a data set leaving the detector, then handler
stores how many files it contains. If the execution was triggered because Swift finished
processing a file, it updates the counter of processed files for the data set, despite the
fact that Swift has no knowledge of which data set the file originates from. To learn this
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ActiveDataClient ad = ActiveDataClient.getInstance ();

TransitionHandler handler = new TransitionHandler () {
public void handler(Transition t, boolean isLocal , Token[] inTokens , ↘

→Token [] outTokens) {
Token dataset = outTokens [0];
String path = "~/aps/incoming/" + dataset.getUid ();
Runtime r = Runtime.getRuntime ();
Process p = r.exec("catalog_loader.py " + path);
p.waitFor ();

}
};

ad.subscribeTo("Globus Transfer.End Transfer", handler);

Listing 5.3: Transition handler that automatically launches metadata extraction when
new files arrive on the shared storage.

information, the handler queries the Active Data API to discover the data set identifier.
Finally, if the last file in the data set has been processed, the log file is updated.

5.4.2 Automation
We now demonstrate how tasks that were previously performed manually can be au-
tomated using our approach. In particular, this feature demonstrates how the Python
metadata extraction script can be run automatically when a transfer to the shared stor-
age completes. In addition, a specific Swift analysis script can be executed when the
transfer of a HDF file to the compute cluster completes.

A first transition handler is set to run after transition Globus Transfer.End transfer
is triggered; Listing 5.3 shows the corresponding code. This handler examines the token
produced by the transition and get its identifier; then, it turns this identifier into a local
path which is used as an argument to the Python extraction script.

The second task is implemented with a different transition handler that is set to
run after transition Globus transfer.Start Swift is published (Listing 5.4). This code
is similar to the previous example, except for the use of a transition guard. Because
tokens have been tagged according to their corresponding file type, we can now filter
out every token that does not link to a HDF file. The transition guard implements the
predicate “HDF” ∈ tags(inTokens[0]), i.e. the first token consumed by the transition
must have the tag “HDF”.

5.4.3 Sharing and Notification
We now consider extending the notification capabilities of the system by advertising
the availability of new data sets on Twitter. After metadata extraction, each data set
is available on the Globus Catalog and annotated with metadata. In the model shown
in Figure 5.3, this corresponds to transition Shared storage.Extract. Listing 5.5 shows
the transition handler used to notify other users of the new data set. Because the token
identifier in the Globus Catalog life cycle is the URL of the data set, the code can
directly derive a unique link to include in the tweet. To provide additional information,
every tag attached to the token is written as a “hashtag” in the tweet. The remainder
of the code makes a REST call to the Twitter API to actually publish the tweet.
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ActiveDataClient ad = ActiveDataClient.getInstance ();

TransitionHandler handler = new TransitionHandler () {
public void handler(Transition t, boolean isLocal , Token[] inTokens , ↘

→Token [] outTokens) {
// Start aps -hdf.swift
Token file = outTokens [0];
String path = "~/aps/hdf/input/" + file.getUid ();
Runtime r = Runtime.getRuntime ();
Process p = r.exec("swift aps -hdf.swift " + path);
p.waitFor ();

}
};

HandlerGuard guard = new HandlerGuard () {
public boolean accept(Transition transition , Token [] inTokens , Token[] ↘

→outTokens) {
return inTokens [0]. hasTag("hdf");

}
}

ad.subscribeTo("Globus Transfer.End Transfer", handler , guard);

Listing 5.4: Automatically launch Swift analysis when input files are available.

ActiveDataClient ad = ActiveDataClient.getInstance ();

TransitionHandler handler = new TransitionHandler () {
public void handler(Transition t, boolean isLocal , Token[] inTokens , ↘

→Token [] outTokens) {
// Construct the URL and the hashtags
String url = "https :// catalog.globus.org/dataset/" + ↘

→outTokens [0]. getUid ();
String hashTags = "";
for(String tag: inToken [0]. getTags ())

hashTags += " #" + tag;

// Twitter API call
String msg = "New data set available " + url + hashTags;
Twitter twitter = new TwitterFactory ().getInstance ();
Status status = twitter.updateStatus(msg);

}
};

ad.subscribeTo("Globus Catalog.Extract", handler);

Listing 5.5: Automatically notify users of the availability of new data sets via Twitter.
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ActiveDataClient ad = ActiveDataClient.getInstance ();

TransitionHandler handler = new TransitionHandler () {
public void handler(Transition t, boolean isLocal , Token[] inTokens , ↘

→Token [] outTokens) {
// Get the data set identifier
LifeCycle lc = ad.getLifeCycle(inTokens [0]);
datasetId = lc.getTokens("Shared storage.Created")[0]. getUid ();

// Remove the data set annotations from the catalog
String url = "https :// catalog.globus.org/dataset/" + datasetId;
Runtime r = Runtime.getRuntime ();
Process p = r.exec("catalog_client.py remove " + url);
p.waitFor ();

// Locally , remove the data sets
String path = "~/aps/" + datasetId;
FileUtils.deleteDirectory(new File(path));

// Publish the "Detector.End"
Token root = lc.getTokens("Detector.Created")[0];
ad.publishTransition("Detector.End", lc);

// Notify the user
sendEmail("user@server.com", "APS - Corrupted data set " + datasetId);

}
};

HandlerGuard guard = new HandlerGuard () {
public boolean accept(Transition t, Token[] inTokens , Token[] outTokens) {

return inTokens [0]. hasTag("failure -corrupted");
}

}

ad.subscribeTo("Swift.Failure", handler , guard);

Listing 5.6: Automatically recover from faulty files.

5.4.4 Error Detection and Recovery
We finally consider the problem of detecting and recovering from experiment-wide errors.
Faulty files sometimes acquired by the detector are only identified during analysis, near
the end of the process. With its limited scope, the analysis program can only fail, with
the effect of also stopping the Swift script. In this situation, the measures taken by
users are to drop the data set entirely and to reacquire the data set with the same
(or fixed) parameters. This procedure can take a considerable amount of time and
represents a significant overhead on the experiment process. We show here how the
surveillance framework can detect these errors immediately by observing Swift failures
and automatically take the appropriate recovery measures, in addition to notifying the
user.

The code presented in Listing 5.6 benefits from the high-level view of the whole
experiment to automatically recover from errors in the same way that the user would.
The handler is executed on a node of the shared storage cluster for any Swift token with
a “failure-corrupted” tag. The handler uses the Active Data client API to retrieve the
LifeCycle object that corresponds to the file, as previously shown in section 5.4.1. The
LifeCycle object is used to access remote elements through their identifier. Associated
metadata are removed from the Globus Catalog (which will trigger the Globus Cata-
log.Remove transition), the files are removed from the shared storage, the Detector.End
transition is triggered for the data set and finally the user is notified via email. After
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all this, a transition handler running on the detector’s acquisition machine can react to
the Detector.End transition by running the acquisition again.

5.5 Conclusions
Large scientific experiments are increasingly complex, distributed and data-centric. It
is common for researchers to employ a range of tools, applications, and services in
their scientific processes and rely on a collection of distributed storage and compute
resources. These factors collectively introduce new data management challenges and
require the development of novel techniques to manage the entire data life cycle. To be
widely adopted, these techniques must be as simple and user-friendly as possible. The
implicit surveillance approach proposed in this Chapter allows users to monitor real-
time data life cycle progress non-invasively. Users of the surveillance framework benefit
from Active Data, its life cycle meta-model and execution system with no concern of the
complexity resulting from the actual infrastructures. The framework provides important
features, including automation, progress monitoring, sharing and notification, and error
detection and recovery. We demonstrated the ease through which users and developers
alike can leverage such functionality by instrumenting a real-world materials science
experiment at a large user facility.

In comparison with other approaches, the proposed approach is both efficient and
easy to use. The user need not perform extensive application-specific development;
instead they leverage instrumented existing and commonly used scientific tools. Con-
versely, application developers need not implement user-specific optimisations. Instead,
they make a single investment to make their scientific tools “Active Data-enabled”.
Creating a comparable infrastructure without Active Data would require the use and
extension of existing systems (e.g., scientific workflows and provenance systems) as well
as the development of significant new functionalities at several levels of the software
stack.
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6
Conclusions and
Perspectives

Efficient data management is a key element for big data success. Existing
approaches rely heavily on ad-hoc solutions that are difficult to maintain and
reuse. In this thesis, we focused on designing a simple and robust approach that

will help scientists manipulate enormous data sets as easily as if they could fit in the
comfort of their laptop.

6.1 Conclusions
In this thesis, we tackled the problem of managing large-scale data sets on hybrid
distributed infrastructures. Considering that scientific and industrial big data ap-
plications often involve multiple non-collaborative systems orchestrated by workflow
or workflow-like systems, we found the need for a novel, rigorous data management
paradigm. We decided that this paradigm should be data-centric and erase from users’
view any element that is not strictly related to data: infrastructure and hardware
details, data location, housekeeping tasks etc.

Active Data, the meta model introduced in this thesis, focuses on the most important
aspects of distributed data life cycles, i.e. the state of distributed data, and operations
that change their state (e.g. creation, replication, transfer, deletion). Its graphical
representation naturally exposes distribution on many systems simultaneously as well
as replication. Then, we have developed the Active Data runtime system that enables
existing data management systems to report on their actions by publishing data tran-
sitions to the world. Conversely, users can react to these actions by automatically
running code when a data transition has been published. The resulting programming
model allows not only users but also any program to get the current state of any data
item, and use it to make informed decisions. Overall, the combination of the formal
meta model and of the runtime system leads the way for more clever data management,
and thus more valuable data sets.

The Active Data programming model offers a rich set of features; its asynchronous
execution model allows a large number of clients to run code without impairing normal
operations; the life cycle catalog enables clients to query the complete state of a data
item distributed on multiple systems and infrastructures from a partial knowledge—a
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local data identifier; the tagging system enables clients to have information travel across
systems in an elegant way, easing coordination between systems.

Active Data was evaluated in three ways that witness that the idea defended in the
thesis is both realistic and relevant to its goals. First, a set of micro benchmarks were
conducted on the Grid’5000 experimental testbed; these benchmarks measured how
Active Data performs when facing important loads and gathered performance metrics.
In particular, we showed that Active Data is adapted for use with common workloads.
Second, four synthetic use-cases have been studied and demonstrated that Active
Data can be used to program implicitly parallel applications, and to optimize existing
systems by becoming data life cycle-aware. We described the implementation of a
distributed storage cache; we created a distributed version of the inotify notification
system; we showed how to handle dynamic data by making applications incremental,
and how the unified view of data life cycles can help collecting provenance information
automatically. Finally, we studied a real-life application, the Advanced Photon Source,
during a two-month visit to Ian Foster and Kyle Chard at the University of Chicago and
Argonne National Lab. This application demonstrates that Active Data can greatly
improve existing applications without changing any of their code. It demonstrated
the construction of a surveillance framework that can help users manage, publish
and share large data sets even when heterogeneous systems and infrastructures are
involved. It can be used to closely monitor the progress of scientific experiments
without manipulating the systems, to recover from errors without human interventions
and to share results as soon as they are produced.

We now advocate for wide adoption of Active Data by data management systems
developers to offer users simple, efficient and safe tools to cure, exploit and share their
data with the world, and to encourage challenged users to take a chance at big data.

6.2 Future Directions
At key times in the course of this thesis, some research directions have been preferred
over others, leaving entire territories unexplored. Here we describe some of the directions
that can be followed in the near future and provide pointers to the adventurous reader
who would like to contribute to this new exciting project.

Provenance Recording In Chapter 4, we demonstrated how one can use Active Data
to capture and make sense of provenance information coming from two non-collaborative
systems. While these results are promising at this scale, we feel that Active Data’s abil-
ity to collect everything that happens to any data item in a system has great potential
for exhaustive, end-to-end provenance capture. A number of provenance databases ex-
ist, featuring different languages and schemas for representing and storing provenance
information [121, 126, 139, 142]. Special transition handlers could be implemented and,
when subscribed to all the transitions in a life cycle model, convert data events into
provenance information. However, the information that Active Data currently gets from
data management systems is only that a specific operation has occurred. Transition han-
dlers are executed in a different context than the one that performed the operation. The
difficulty for extensive provenance recording will be to make sure that in this context,
Active Data can gather enough information about the environment where an operation
was executed, e.g. the version of the operating system, installed programs and libraries,
environment variables.
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Data Resources Traceability In the continuation of automatic and exhaustive
provenance collection, Active Data could lead to better promote research results and
asses the quality of data over extended time periods. Within the next few years, we
can imagine that scientists will publish their data sets the way they currently publish
research, and reuse data sets the way they cite research. In this perspective Active
Data offers solutions to many challenges by allowing to track data sets from the acqui-
sition machine to the research paper and to the editor. Active Data can also enable
scientists to measure the quality of data sets with new metrics, such as how expensive
or eco-friendly a data set is, or valuable it is based on its citations and derivations.
To make this happen, after all data transitions have been identified and integrated in a
data life cycle model, the first challenge would be to associate a “cost” to each transition
e.g. CPU cycles, power consumption, financial cost, emitted CO2. Establishing these
cost models would require extensive static and dynamic analysis of data management
systems, analytics programs and storage systems. The cost model is tightly linked to
determining how much of the power consumed by a computer corresponds to a specific
program or instruction, which is an open problem at the moment and can only be esti-
mated. Further, a second challenge is to implement the infrastructure of such a system.
In particular, new ways of uniquely identifying data sets and versions will be needed as
scientists will produce and reuse data sets in a common namespace that spans over all
continents and scientific domains [162].

Cross-system optimization In this thesis, we have only started to explore the pos-
sibilities of cross-system optimizations in the so called “big data stack”, i.e. the software
and hardware stack used to manipulate big data. However, this stack often comprises
dozens of software, most of which cannot react in a smart way when other components
in the stack fail. This perfectly normal situation (after all, a software is naturally limited
by it scope) can be improved by extending the scope of data management systems. For
example, consider how HDFS replicates files; by default, it keeps 3 replicas of each files,
with at least a replica in a separate rack. When a replica is missing, HDFS creates a
new one to maintain a count of 3 replicas per file. However, when both racks go down at
once, HDFS loses all 3 replicas and reports the file as permanently lost. This situation
illustrates the challenge in cross-system optimization: if we widen the scope of HDFS,
it could silently recover the file from somewhere else. Another example would involve
two systems running on top of HDFS like Pig [87] and YSmart [88]. Each would read
the same HDFS files and possibly compute identical intermediate files, also stored in
HDFS. Because they do not collaborate, they cannot take advantage of this situation
and use the already computed intermediate files. The idea of using Active Data for this
kind of tasks was explored in Chapter 5 and needs to be extended. To this end, we
devise several research axis that combined together will make transparent cross-system
optimizations a reality. The first axis is more of a prerequisite and requires making
every data management system participating in an application Active Data-enabled.
The second axis is to formalize the concept of cross-system communication and opti-
mization through generic interfaces; this means allowing systems to expose problems
they are facing (e.g. data loss, inconsistencies, full storage), and solutions they can
provide (e.g. data replicated, possibility to regenerate a file). This interface is partly
offered by Active Data and can be extended by the addition of a set of standard life
cycle transitions that would mean the same thing for any life cycle model (data lost,
data replicated, etc.) in addition to the existing “data created” and “data deleted”. A
third ambitious research axis would focus on making cross-system optimizations effort-
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less with massive code reuse, by providing a set of generic transition handlers for anyone
to use, in a sort of centralized transition handlers store.

Cloud Service Deployment and Monitoring This thesis has explored using a
meta model to represent the internal life cycle of data management systems and inter-
actions between them; this is a top-down approach. A bottom-up approach could use
the meta model to specify interactions between systems a priori. Asma Ben Cheikh is
a Ph.D candidate at the University of Tunis; she is currently developing system that
takes a data life cycle model as a specification for the deployment of applications in the
cloud. First, each service available for deployment must be modeled and made Active
Data-enabled; then, users describe the services they need and their interaction by com-
posing the life cycle models of different services into one model; last, the deployment
system reads the data life cycle model and deploys the necessary services. The deployed
infrastructure fully reports to an Active Data instance that users can use to monitor
their applications.

Verification Active Data defines a meta model based on Petri Networks to represent
the life cycle of data in distributed systems. In this thesis, the meta model has been
mostly used for graphical representations and to ensure at runtime that an execution is
correct with respect to a user-provided model. There is however much more to do in the
domain of analysis of life cycle models. Petri Network specialists could study classical
techniques to prove properties on life cycle models, helping users determine whether
their construction is correct, through liveness or the absence of data loss. Verification
techniques could also open the door to automatic composition, i.e. allowing a program
to compose life cycle models together, possibly live, to reflect a situation (observing a
running system and composing a life cycle model as it go), or to allow life cycle models
to be composed from higher-level specifications by an automated process, as it will be
the case for cloud services deployment.
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