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Big Data

> Science and Industry have become data-intensive
> Volume of data produced by science and industry
grows exponentially
> How to store this deluge of data?
» How to extract knowledge and sense?
» How to make data valuable?
> Some examples
» CERN's Large Hadron Collider: 1.5PB/week
> Large Synoptic Survey Telescope, Chile: 30 TB/night
> Billion edge social network graphs
» Searching and mining the Web
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Cyber-Infrastructures for Dato-Intensive Science

Infrastructures are globally distributed, heterogeneous and complex.
Example: the Advanced Photon Source experiment workflow.

More analysis

Upload result

Remote Academic
Data Center Cluster

Analysis

Instrument | Transfer Local
(Beamline) Storage

Extract &
Register Metadata

Metadata
Catalog

Argonne

NATIONAL
LABORATORY

— Assemblage of infrastructures that have very different characteristics
(cost, administrative policy, local network and interconnection,
performance).
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Emergence of Data-Oriented Programming Models

Programmers need abstractions to exploit these complicated
infrastructures. Programming models become implicitly parallel:

» MapReduce > Ysmart
> AllPairs > Hive

> Pregel » Spark
» GraphLab » Twister
» Phcenix > Pig
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Example: Evolution of the MapReduce Programming Model

Techniques for improved processing in MapReduce

i ! . Interactive, Processint
Data Avoidance of Early Iterative Query Fair Work Reali 9
Access Redundant Termination Processing ~ Optimization Allocation eal-time rway
Processing Processing Operations

Batch Processing

Indexi '"'e;"‘"“a‘ Data P;°(§ess‘"9 Soring (Optimizations Data Flow Additional
ndexing  Data Qf Queries Optimization . MR phase
Placement 8Y°US Parameter P Streaming) o
Incremental\ ~ Sampling Tuning pre- Pipelining Redistribution
processing, \Batchin of keys
Processing Looping Plan Sampli ] Y
Caching, | Cremental Refinement, amping X Inmemory Record
Partitioning  Colocation Result Result Pipe"nigé Processing  Operator ode Repartitioning  Processing Duplication
esu o Analysis
Sharing  Materialization Reoursion Reordering Pre-
computation

Figure: Taxonomy of MapReduce improvements for efficient query processing (source:
Doulkeridis et al., 2014).

— People do not program data analysis without high-level
abstractions anymore.
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Data Management Systems

Data Management System

A software system that performs one or more management
operations on data as part of an application, such as storage,
transfer, filtering, analysis.

Data management systems also provide high-level abstractions:
> High-level APIs to access heterogeneous resources
» Transparent data placement and replication
» Transparent fault tolerance
» Abstractions for mutating data

» New unstructured databases

l—— 0
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Task-centric vs Data-centric

Workflow & dataflow systems are used to coordinate these
systems.

Task Centric Data Centric
» Task sequence Data-dependancy
> Implicit control flow
> Monitor task completion

Explicit control flow
Monitor data production

vVvyVvyyvyy

. V! . .
> Coarse granularity S Very fine granularity
> Hard to program, maintain, verify Direct link between data product & task
Swift, DAGMan, Pegasus Dryad

— Data intensive applications should be driven by data.
— Infrastructure details must fade away, allowing programmers to focus on
their analytics.
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Data Provenance

Data provenance

The complete history of derivations and treatments throughout the
life of data.

Recording and storing provenance:
> Helps preserving the quality of scientific data over time;
» Allows optimizations (recover vs regenerate);

> Is old research, but a new trend: scientists want to keep track
of where their data sets come from.

> “The Open Provenance Model” (Moreau et. al, 2007)

> “Provenance-Aware Storage Systems” (Muniswamy-Reddy et. al,
2006)

“The requirements of using provenance in e-science experiments”
(Groth et. al, 2007)

v
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Data Life Cycle: Definition

All of these management operations form the Life Cycle of data.

Definition 1

The Data Life Cycle is the course of operational stages through
which data pass from the time when they enter a system to the
time when they leave it.

» Creation/Acquisition
» Transfer

» Replication

» Disposal/Archiving

We need a rigorous approach for data management on
heterogeneous distributed infrastructures.

o
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Challenges with Data Life Cycle

More data is:
» more machines
» more disks
» more unexpected events

As the volume of data grows, managing the life cycle of distributed
data requires more abstractions and the cooperation of more
systems:

v

Handling the complexity of infrastructures

v

Handling the complexity of data management systems

v

Being able to recover from unexpected situations

v

Being able to exploit infrastructures at their best

v

Allow cross-system optimizations
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Challenges with Data Life Cycle: Related Works

Some attempts at addressing data life cycle management:

» “Addressing big data issues in scientific data infrastructure”
(Demchenko et. al, 2013)

> “Storage and Data Life Cycle Management in Cloud Environments
with FRIEDA” (Ramakrishnan et. al, 2015)

But:

> Until now, there has been no model for representing data life
cycles formally in systems and across systems

» We need a model for specifying and programming data
management applications

o
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Objectives

This thesis aims at making distributed data life cycle management
rigorous, easier and more efficient.

1.

Offer a formal meta-model for representing the life cycle of
distributed data in any system and across systems;

Define a model to provide a unified view of the same data in
different systems and infrastructures;

Offer this unified view of the life cycle to users and programs
with a programmable environment;

. Propose a programming model that allows to develop data

management applications by reacting to life cycle events,
using the meta-model implementation;
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Active Data

®
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Methodology

» A formal approach:
» Propose a model for representing the life cycle of data inside
and across systems
» Analyze data management systems, identify the features that
must be modeled
» Extensions of Petri Networks to construct a suitable
meta-model

> An experimental approach:

» Prototype implementation as a Java library (GPL)

» Performance evaluation on Grid'5000

» Evaluation of the programming model through usage scenarios
and applications

o
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Active Data principles

System programmers expose their system’s internal data life cycle with
a model based on Petri Nets.

A life cycle model is made of Places and Transitions

CREATED ‘WRITTEN READ TERMINATED

Oo—k -0 Itz@ -0

Each token has a unique identifier, corresponding to the actual data
item’s.
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Active Data principles

System programmers expose their system’s internal data life cycle with
a model based on Petri Nets.

A life cycle model is made of Places and Transitions

CREATED ‘WRITTEN READ TERMINATED
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Each token has a unique identifier, corresponding to the actual data
item’s.
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Active Data principles

System programmers expose their system’s internal data life cycle with
a model based on Petri Nets.

A life cycle model is made of Places and Transitions

CREATED ‘WRITTEN READ TERMINATED

O—k -0 IQ((:) -0

A transition is fired whenever a data state changes.
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Active Data principles

System programmers expose their system’s internal data life cycle with
a model based on Petri Nets.

A life cycle model is made of Places and Transitions

CREATED ‘WRITTEN READ TERMINATED

)~ ~ ') )
-0~} —-0—1 IO
- t1 ta ty
_ - ’
= 7
public void handler ()
t3

{
computeMD5 () ; /
3 /

Code may be plugged by clients to transitions.
It is executed whenever the transition is fired.
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Composition

Offers a unified view of data in different systems. ..

STORED Read

ACQUIRED
| |
Delete Delete

TERMINATED TERMINATED

Instrument Storage

@

17/45
Ph.D Defense




Composition

Offers a unified view of data in different systems. ..

CRENTED CREATED
|
Store
STORED Read
| |
Delete Delete
TERMINATED TERMINATED
Instrument Storage
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Composition

... and keeps track of identifiers.

\
CREATED CREATED I
|
\\
\ . =
\ Acquire Store
\ Store

«_(»
ACQUIRED STORED Read
| |
Delete Delete
TERMINATED TERMINATED
Instrument Storage
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Life Cycle Meta Model

Petri Networks are a natural fit for representing life cycle models.

A Petri Network is 5-tuple PN = (P, T, F, W, Mo) where:

» P={p1,p2,...,Pm} is a finite set of places represented by circles;

> T ={ti,to,...,ta} is a finite set of transitions represented by rectangles;

» FC(Px T)U(T x P) is a set of oriented arcs between places and
transitions and between transitions and places;

v

Places in a Petri Net may contain tokens represented by e;

v

W : F — N* is a weight function which indicates how many tokens every
transition consumes and how many tokens it produces;

» My : P — N is a function that indicates the initial marking of places.

Ph.D Defense



Life Cycle Meta Model

Life cycle models are Petri Networks with additional elements. . .

Definition 3

A data life cycle model is a 6-tuple LC = (P, TUT',FUF', G, W, M)
which represent respectively a set of places, transitions, arcs, inhibitor
arcs, a weight function and an initial marking.

... for supporting data life cycle features:

Identification

v

v

Replication

v

Composition

Termination

v

o
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Active Data API

First, Active Data needs to know the life cycle model of applications.
Users construct an object-oriented representation of the LCM:

// Instantiate a Life Cycle Model
LifeCycleModel model = new LifeCycleModel("storage");

// Add places, transitions and arcs

Place created = model.getStartPlace();
Place written = model.addPlace("Written");
Place terminated = model.getEndPlace();

Transition write = model.addTransition("Write");
Transition delete = model.addTransition("Delete”);

-
COWOWNOUHWNH

-
oy

model.addArc (created, write);
model.addArc (write, written);

o
w N

Then, systems must notify Active Data when they created new data:

-

// Publish the new life cycle
2| ActiveDataClient client = ActiveDataClient.getInstance();
3| LifeCycle 1lc = client.createAndPublishLifeCycle(model, "12345");

After that, Active Data will maintain the state of this data item and be
able to receive transition publications.

o
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Subscribing to transitions

W N =

~N oo s

-

EN

5
6
7
8

Clients can react to DLC progress by subscribing code called transition
handler. Active Data offers two ways of subscribing transition handlers:

> Subscribing to a transition for any data item

// Subscribe to the transition
TransitionHandler myHandler = new TransitionHandler () {
public void handler(Transition transition, bool isLocal, Tokenl[]
—inTokens, Token[] outTokens) {
System.out.println("Reacting to transition " + transition.getName());
}
}
client.subscribeTo (write, myHandler);

> Subscribing to any transition for a specific data item

// Subscribe to all transitions of the life cycle
TransitionHandler myHandler = new TransitionHandler () {
public void handler(Transition transition, bool isLocal, Tokenl[]
—inTokens, Token[] outTokens) {
System.out.println("Reacting to transition " + transition.getName() +
— " for life cycle " +
inTokens [0].getUid ());
}
}s
client.subscribeTo(lc, myHandler);

5
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Publishing & Querying

Data management systems must notify Active Data of operations they
perform on Data. This is called publishing a transition and allows Active
Data to update the state of the life cycle:

-

// Publish a transition
2| client.publishTransition(write, lc);

From a partial view (local identifier in a single system), Active Data
allows to examine the global state of a data item (every token on every
place).

1| // Query the complete state of another life cycle
2| LifeCycle lc = client.getLifeCycle("storage”, "12345");

Clients can now look beyond their scope.

o
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System Design

Sh tra nsi;:,'of7

Q\)\o\\
Active Data
Service

Figure: Architecture of Active Data: clients (data management systems and users)
communicate with a centralized service in a Publish/Subscribe fashion.

o
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Execution Model

Active Data’'s execution model

» is asynchronous, based on Publish/Subscribe

> any client can be publisher and subscriber

» facilitates deployment on uncooperative infrastructures

» the service maintains a queue of transitions for each subscriber
» Active Data orders handler execution by publication time

> allows to run transition handlers anywhere

> does not guarantee if or when transition handlers will be
executed

» allows transition handlers to publish transitions

o
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Token Tags & Guarded Execution

Systems can generate a very large number of notifications.
> Active Data allows Tags to be attached to tokens

» Then clients can subscribe their code to be executed only for tokens
having certain tags (Guarded Execution)

Tags can be any string:
> File type, e.g. “JPG”, "BINARY".
> Data collections
» Remote information, e.g. “Test A passed”.
Tags can be attached:
> On the server side, with no client intervention ( Taggers)
> On the client side

Filtering is performed by the server.

o
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System Integration

Multiple intrusive and non-intrusive methods for making systems
“Active Data" enabled:

Instrumentation Notification systems Y Log processing
= =
7\

DLM system

main.c I

Scrapper

A

Log file

(—I(—

|
oK N oK N oK

o—F-0 o—-0

? %
5

o
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System Integration

Five data management systems are already Active Data-enabled.
> BitDew

inotify

iRODS

Globus Online

Hadoop & HDFS

% /OT;T -

vV v.v Yy

LT A

TERMANATED t Lost O It O
eLdTED 3NVA15v\I
t t; t b
ta PLACED

t:
COMPLETED 3 STARTED

r,I
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Evaluation
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Micro benchmarks: Experimental set up

All experiments have been performed on two # 7 T
Ch : 1 « Grid’5000
clusters of the Grid'5000 experimental testbed". x

*

| Cluster (Site) | Griffon (Nancy) | Suno (Sophia) |

Nodes 92 45

2 X 4-core 2 X 4-core
CPUs Intel Xeon L5420 Intel Xeon E5520

© 2.5Ghz @ 2.26GHz
Memory 16GB 32GB
Storage 320GB hard drive | 2 x 300GB hard drives
Network Gigabit Ethernet
Operating system Debian Linux 3.2

"http://www.grid5000. fr
©
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http://www.grid5000.fr

Micro benchmarks: Transition publication throughput

35,000~

30,000
25,000

20,000

Transitions per second

=R
o u
o o
S o
S o

5,000

1050 100 200 300 400 450 500 550
# clients
Figure: Average number of transitions handled by the Active Data Service per second

with a varying number of clients. Each client publishes 10,000 transitions without
pausing between iterations.
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Micro benchmarks: Response Time & Overhead

med 90th centile std dev
Response time | Local | 0.77 ms 0.81 ms 18.68 ms
Eth. | 1.25 ms 1.45 ms 12.97 ms

w/o AD with AD
38.04 s 40.6 5 (4.6%)

Overhead Eth.

Table: Response time in milliseconds for life cycle creation and publication, transition
publication and overhead measured using BitDew file transfers with and without
Active Data.

o
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Micro benchmarks

We run the Hadoop TeraSort benchmark with a 1TB data set, 280
mappers and 70 reducers.

200 (— j
175 “oom ,
20
50| s | |
2
s 150 |
g 15 B
8 s F
g
200 |————— Wi |
5
= 75 [
z
g 5f s0 ] 1
£
. 2 |
o T phallan i~
25 o 2 @ e w10 w0 e 0 18 20 |
o A AL st m g " ol

[ 500 1,000 1500 2,000 2500 3,000 3,500 4,000 4500 5000 5500 6,000 6500

Time (seconds)

Figure: Number of transitions published each second during the Hadoop Terasort
execution.

Maximum: 196 transitions per second.
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Evaluation: Usage Scenarios

We evaluate the expressivity of the programming model with 4
usage scenarios:

» Storage cache (writing distributed applications based on the
data life cycle)

» Collaborative sensor network (managing data sets distributed
across systems or infrastructures)

» Data provenance (using a unified life cycle for recording
provenance across systems)

» Incremental MapReduce (optimizing an existing system for
coping with dynamic data)

The use-cases also demonstrate how Active Data can improve
existing systems by extending their scope to the whole application.

o
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Use-Case: Incremental MapReduce

Once a system is Active Data-enabled, it can cope with dynamic data by
subscribing to modification transitions.

Can we make BitDew MapReduce incremental by just changing a few lines of
code?

» Workers can observe all modifications of their input chunks

> When the job is re-executed, they can process only the modified chunks

CREAT EADY

TERMANATED 5 INVAL“\I &2
ts i

COMPLETED STARTED

= O—
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Use-Case: Incremental MapReduce

Once a system is Active Data-enabled, it can cope with dynamic data by
subscribing to modification transitions.

Can we make BitDew MapReduce incremental by just changing a few lines of
code?

» Workers can observe all modifications of their input chunks

> When the job is re-executed, they can process only the modified chunks

Workers

public void handler () {
I

if (1local & mine (chunk))
addTag("dirty");

CREAT
Master
public void handler () { \
if (local & chunk)

addTag("dirty"); t
} TERMMNATED ° INVAL

N
T~ < N
Tl AN iv
=~ N

t:
COMPLETED 3 STARTED
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Usage Scenarios: Incremental MopReduce

1. We measure the whole execution once

2. We modify a fraction of the input chunks and measure the
time to re-run the job

Word count benchmark:

> 10 mappers

> 5 red Fraction modified | 20% | 40% | 60% | 80%
reducers Update time 27% | 49% | 71% | 94%
» 3.2 GB input file Table: Incremental MapReduce: time to update
. the result compared with the fraction of the data
> 200 16MB-chunks files s P

Significant speedup with less than 2% of the code changed
thanks to Active Data.

o
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Data Surveillance
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The Advanced Photon Source

Data-intensive distributed application involving
multiple software

> 3 to 5TB of data per week on a single detector

Metadata

. /
> 3 tools involved: W 2Edact
/

L

» Globus Transfers

4. Swift Parallel Analysis |

i D
> Globus Catalog § J
> Swift H petestor | Lo Storage Compute Cluster
W i 1. Local 3. Globus .
| T;ansfer Transfer SWITG»
> Tasks are launched manually
.
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The Advanced Photon Source

Data-intensive distributed application involving
multiple software

> 3 to 5TB of data per week on a single detector

. /
> 3 tools involved: W 2Edact
/

L

Metadata

» Globus Transfers

> Globus Catalog
> SWlft : Detector |:>

/ 4. Swift Parallel Analysis |

Local Storage

Compute Cluster

3. Globus

1. Local Transfer Swift»

Transfer

> Tasks are launched manually

What is inefficient in this workflow?
» Many error-prone tasks are performed manually

» Users can't monitor the whole process at once
> Small failures are difficult to detect
> A system alone can't recover from failures caused outside its scope

o
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We want to use Active Data to achieve the following goals:
» End-to-end progress monitoring
» Automation

> Error discovery & recovery

v

Sharing & notifications

o
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Data Surveillance Framework

Framework features:

D M @ » Single namespace for all the files,

datasets and metadata manipulated by
the workflow

O % :: » High-level life cycle-centered view of
O data

Life Cycle View

Il > Runtime data tagging system

° ° '} » Custom user reaction to data progress
° Tagged Tokens

[ ]
e » Custom code execution

» Custom notifications

Guard

2N » Powerful filters based on data tags

Code Execution Notification

o
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APS Experiment Life Cycle Model

Globus Catalog

CREATED
L Jpdate

Failure Success @), | | (@)
Extract CREATED Remove TERMINATED

CREtTED Start transfer Faifep SUCCREDED  En transfer Crefren

] CREATED CREATED
End End End Eng  Start transfer
e o/ e) Lare " Buces
TERMINATED TERMINATED TERMINATED

<—|—O<—I

tart Swift Initialize Derive

Detector Globus transfer Shared storage Fallen Succheben Falla

> Single view from detector to analysis >«

TERMINATED TERMINATED

> Each system has been modeled separately and
then composed

Globus transfer Swift
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Results: Error Detection & Recovery

Example scenario

Recover from system-wide errors: faulty acquired files are detected
only after Swift fails to process them.

In this situation, the user manually:
» Drops the whole dataset
» Removes any associated file and metadata

» Re-acquire the dataset using the same parameters

o
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Results: Error Detection & Recovery

Globus Catalog

‘CREATED

I O i

Extract CREATED Remove TERMINATED

Failure Success

CREATED

Initialize

Derive

(@] O Failure Success
TERMINATED TERMINATED TERMINATED

Detector Globus transfer Shared storage

TERMINATED

Globus transfer Swift
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Results: Error Detection & Recovery

‘public void handler () {
restart_acquisition();
Globus Catalog

I
|
! 7
| CreaTED
h 14 Jpdate
I
h Failure Success (@;
X L, Extract CREATED Remove TERMINATED
7
CHENTED - Start transfer Failep SUCCREDED  End transfer  CRENTED
4 CrEATED o
E sfe y REATED

End End End Eng STt i

(@) O O Failure Success [/ Ko Initialize Derive

TERMINATED

TERMINATED TERMINATED
Detector Globus transfer Shared storage __ _ — e - Succ [EpED P
T v
= -
Public void handler O { End e End
removeFromDataCatalog () ; -
removeFromSharedStorage () ; /
remove ) ; Q
client.publish("Detector.End"); TERAMINATED TERMINATED
notifyUser (); -
U 4
Globus transfer Swift

“Failure-corrupted” € x
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Conclusion
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Conclusion

This thesis tackles the problem of managing large-scale data sets
on hybrid infrastructures, with a formal and an experimental
approach:

>

We studied the characteristics of applications and devised the
first meta-model to represent them

We proposed Active Data, implementation of the model that
brings an end-to-end view of applications to programs and
users

We proposed a programming model for managing distributed
data sets

We evaluated the programming model with micro-benchmarks
and usage scenarios

We confronted Active Data to a real-life application in
collaboration with ANL

Ph.D Defense



There is always more to be done:

» Provenance recording

v

Data traceability

v

Cross-system optimizations

v

Cloud service deployment
» Asma Ben Cheikh (University of Tunis)

Verification

v

o
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Thank you!

Questions?
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