Introduction 000000 Active Data

Discussion 00 Conclusion 000

Active Data A Data-Centric Approach to Data Life-Cycle Management

Anthony Simonet¹ Gilles Fedak¹ Matei Ripeanu² Samer Al-Kiswany²

¹Inria, ENS Lyon, University of Lyon ²University of British Columbia

November 26th, 2013

Introduction	Active Data	Discussion	Conclusion	
000000	0000000000	00	000	

Outline

Introduction Data Life Cycle Management Use-case Requirements

Active Data Active Data: principles & features

Discussion Advantages

Limitations

Conclusion Related works Conclusion

A. Simonet(Inria)

Active Data (University of Chicago)

Introduction	Active Data	Discussion	Conclusion	
00 000			000	
Big Data				

- Science and Industry have become data-intensive
 - Volume of data produced by science and industry grows exponentially
 - How to store this *deluge* of data?
 - How to extract knowledge and sense?
 - How to make data valuable?
- Some examples
 - ► CERN's Large Hadron Collider: 1.5PB/week
 - Large Synoptic Survey Telescope, Chile: 30 TB/night
 - Billion edge social network graphs
 - Searching and mining the Web

A. Simonet(Inria)

Discussion 00 Conclusion 000

Data Life Cycle

Data Life Cycle

- Creation/Acquisition
- Transfer
- Replication
- Disposal/Archiving

Definition

The life cycle is the course of operational stages through which data pass from the time when they enter a system to the time when they leave it.

Discussion 00 Conclusion 000

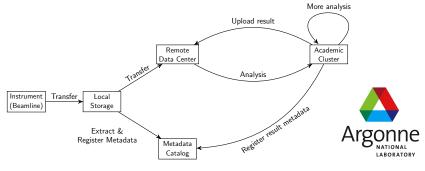
Data Life Cycle Management

Complicated scenarios

- Execution of workflow
- Complex interactions between software
- Need to quickly react to operational events

Ad-hoc task-centric approaches

- Hard to program, maintain and debug
- No formal specification
- Complicates interactions between systems


Introduction	Active Data
000000	

Discussion 00 Conclusion

Data Life Cycle Use-case

Example: the Advanced Photon Source at Argonne National Lab

- 100TB of raw data per day
- Raw data are preprocessed and registered in a Globus dataset catalog
- Data are analyzed by various applications
- Results are stored in the dataset catalog and shared

Use-case

Vs

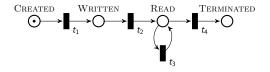
Task Centric

- Independent scripts
- ► Hard to program, maintain, verify
- Coarse granularity

Data Centric

- Express data-dependancies
- Cross data-center coordination
- User-level fault-tolerance
- Incremental processing

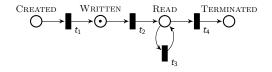
Requirements


Challenges: a perfect system should...

- Simply represent the life cycle of data distributed across different data centers and systems
- Simplify DLM modeling and reasoning
- Hide the complexity resulting from using different infrastructures and systems
- Be easy to integrate with existing systems

System programmers expose their system's internal data life cycle with a model based on Petri Nets.

A life cycle model is made of **Places** and **Transitions**

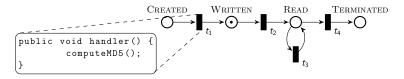

Each token has a unique identifier, corresponding to the actual data item's.

A. Simonet(Inria)

Active Data principles

System programmers expose their system's internal data life cycle with a model based on Petri Nets.

A life cycle model is made of **Places** and **Transitions**


A transition is fired whenever a data state changes.

Active Data principles

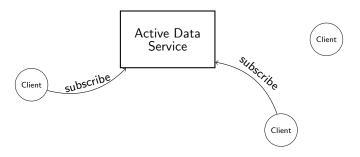
System programmers expose their system's internal data life cycle with a model based on Petri Nets.

A life cycle model is made of **Places** and **Transitions**

Code may be plugged by clients to transitions. It is executed whenever the transition is fired.

Discussion 00

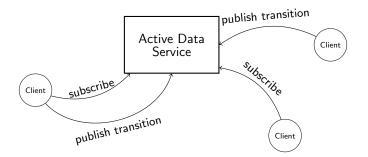
Active Data features


The Active Data programming model and runtime environment:

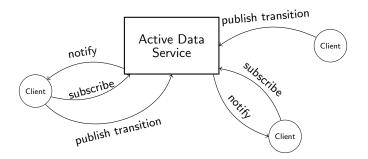
- Allows to react to life cycle progression
- Exposes transparently distributed data sets
- Can be integrated with existing systems
- Has scalable performance and minimum overhead over existing systems

Introduction	Active Data	Discussion	Conclusion
000000		00	000

Implementation


- Prototype implemented in Java (\simeq 2,800 LOC)
- Client/Service communication is Publish/Subscribe
- 2 types of subscription:
 - Every transitions for a given data item
 - Every data items for a given transition

Introduction	Active Data	Discussion	Conclusion
000000		00	000


Implementation

- Several ways to publish transitions
 - Instrument the code
 - Read the logs
 - Rely on an existing notification system
- The service orders transitions by time of arrival

Introduction	Active Data	Discussion	Conclusion
	0000000000		
	· · · · · · · · · · · · · · · · · · ·		
	Implemen	tation	

- Clients run transition handler code locally
- Transition handlers are executed
 - Serially
 - In a blocking way
 - In the order transitions were published

Performance evaluation: Throughput

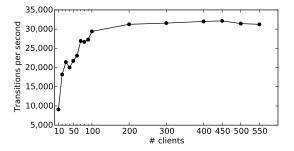


Figure: Average number of transitions per second handled by the Active Data Service

Clients publish 10,000 transitions in a row without pausing.

A. Simonet(Inria)

Active Data (University of Chicago)

Performance evaluation: Throughput

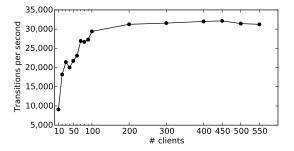


Figure: Average number of transitions per second handled by the Active Data Service

The prototype scales up to 30,000 transitions per seconds.

A. Simonet(Inria)

Active Data (University of Chicago)

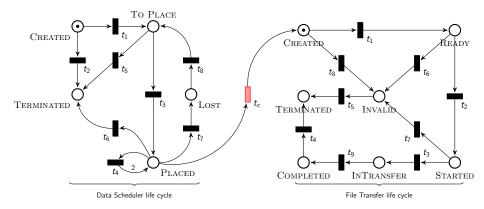
Discussion 00 Conclusion 000

Supported Systems

4 systems

- BitDew
- inotify
- Globus Online
- iRODS
- 4 use-cases
 - Storage cache for Amazon S3
 - Distributed data throttling
 - Incremental MapReduce
 - Data provenance

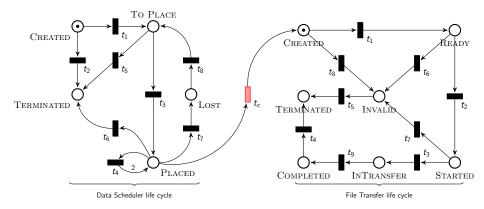
Discussion 00 Conclusion 000

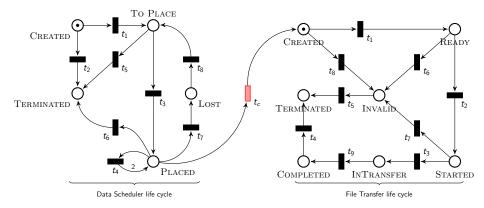

Supported Systems

4 systems

- BitDew
- inotify
- Globus Online
- iRODS
- 4 use-cases
 - Storage cache for Amazon S3
 - Distributed data throttling
 - Incremental MapReduce
 - Data provenance

Introduction	Active Data	Discussion	Conclusion
000000	00000●00000	00	000
	Exemple: [BitDew	


Complete life cycle models inferred from the code.


Exemple: BitDew

Composition of the life cycle for data management and the life cycle for data transfers.

Replication and fault tolerance are included in the model.

Conclusion 000

Performance evaluation: Overhead

		med	90 th centile	std dev
Latency	Local	0.77 <i>ms</i>	0.81 <i>ms</i>	18.68 ms
	Eth.	1.25 <i>ms</i>	1.45 <i>ms</i>	12.97 ms
Overhead	verhead Eth. w/o A		with AD	
	38.04 <i>s</i>	w/o AD 38.04 <i>s</i>	40.6 s (4.6%)	

Table: Latency in milliseconds for life cycle creation and transition publication and overhead measured using BitDew file transfers with and without Active Data.

A single node transfers 1,000 1KB files. More than 6,000 transitions published.

Discussion 00 Conclusion 000

Supported Systems

4 systems

- BitDew
- inotify
- Globus Online
- iRODS
- 4 use-cases
 - Storage cache for Amazon S3
 - Distributed data throttling
 - Incremental MapReduce
 - Data provenance

Discussion 00 Conclusion 000

Exemple: Data Provenance

Definition

The complete history of data life cycle derivations and operations.

- Assess the quality of data
- Keep track of the origin of data over time
- Specialized Provenance Aware Storage Systems

Discussion 00 Conclusion 000

Exemple: Data Provenance

Definition

The complete history of data life cycle derivations and operations.

- Assess the quality of data
- Keep track of the origin of data over time
- Specialized Provenance Aware Storage Systems

 \longrightarrow What about heterogeneous systems?

Discussion 00 Conclusion 000

Exemple: Data Provenance

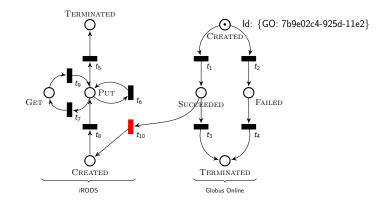
Definition

The complete history of data life cycle derivations and operations.

- Assess the quality of data
- Keep track of the origin of data over time
- Specialized Provenance Aware Storage Systems

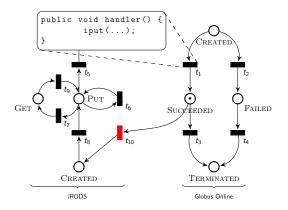
 \longrightarrow What about heterogeneous systems?

Example with Globus Online and iRODS

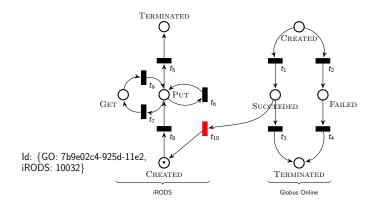

File transfer service

Data store and metadata catalog

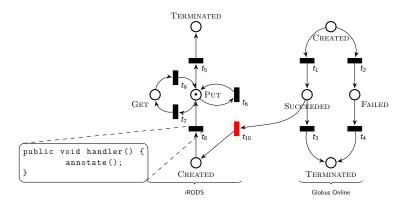
 Introduction
 Active Data
 Discussion
 Conclusion


 0000000
 0000000000
 000
 000

Active Data: principles & features


Active Data: principles & features

 Introduction
 Active Data
 Discussion
 Conclusion


 0000000
 0000000000
 000
 000

Active Data: principles & features

Active Data: principles & features

Introduction 000000 Active Data

Discussion 00 Conclusion 000

Exemple: Data Provenance

```
$ imeta ls -d test/out test 4628
AVUs defined for dataObj test/out_test_4628:
attribute: GO_FAULTS
value: 0
_ _ _ _
attribute: GO_COMPLETION_TIME
value: 2013-03-21 19:28:41Z
_ _ _ _
attribute: GO_REQUEST_TIME
value: 2013-03-21 19:28:177
_ _ _ _
attribute: GO_TASK_ID
value: 7b9e02c4-925d-11e2-97ce-123139404f2e
_ _ _ _
attribute: GO SOURCE
value: go#ep1/~/test
_ _ _ _
attribute: GO DESTINATION
value: asimonet#fraise/~/out_test_4628
```

A. Simonet(Inria)

Introduction	Active Data	Discussion	Conclusion
000000		••	000
	Advant	ages	

- Simple and graphical way to program DLM operations
- Allows to formally verify some properties of data life cycles
- Easy coordination between systems
- Easy to scale
- Easy to debug
- Easy fault tolerance
- Fine-grain interaction with data life cycle

Introduction	Active Data	Discussion	Conclusion
000000	0000000000	○●	000
	Limitat	tions	

- Complexity to reason in terms of life cycle events
- Lack of standard

Introduction	Active Data	Discussion	Conclusion
000000	0000000000	00	●○○
	Related v	works	

- Data-centric parallel programming languages (MapReduce, Dryad, Allpairs, Twister, PigLatin...)
- Runtime execution environments for dynamic data : incremental processing (Percolator), parallel stream processing (Nephele, MapReduce Online), workflow (Chimera)
- Event based processing (Mace, libasync, Incontext)
- Data Provenance addresses the issue of representation of data-set derivation (PASS, Open Provenance Model)
- Data Management Software (BitDew, Chirp, MosaStore, Globus Online, DCache, iRODS and many more)

000000	0000000000	Discussion 00	Conclusion ○●○	
Conclusion				

Active Data is...

- Data-centric & Event-driven
- System-level data integration

What's next?

- Advanced representation of operations that consume and produce data: represent data derivation
- Data collection abilities
- Distributed implementation of the Publish/Subscribe layer

Introduction 000000 Active Data

Discussion 00 Conclusion

Thank you! Questions?

A. Simonet(Inria)

Active Data (University of Chicago)

November 26th, 2013 24/24