
Using Active Data to Provide Smart Data
Surveillance to E-Science Users

Anthony Simonet1 Gilles Fedak1

Kyle Chard2 Ian Foster3

1Inria 2University of Chicago
3Argonne National Laboratory

March 4th, 2015



The problem

Offer real time end-to-end monitoring & easy data
management paradigm to data-intensive application users.

↓
“Data surveillance framework”

One example: the Advanced Photo Source (APS)

1/15

Anthony Simonet(Inria) PDP 2015 – Turku, Finland March 4th, 2015



The Advanced Photon Source

2/15

Anthony Simonet(Inria) PDP 2015 – Turku, Finland March 4th, 2015

Data-intensive distributed application involving multiple software

I 3 to 5TB of data per week on a single detector
I 3 tools involved:

I Globus Transfers
I Globus Catalog
I Swift

I Tasks are launched manually Globus Catalog Globus 

Detector Local Storage Compute Cluster

1. Local
Transfer

2. Extract
Metadata

3. Globus
Transfer

4. Swift Parallel Analysis



Problems with APS

What is inefficient in this workflow?
I Many error-prone tasks are performed manually

I Users can’t monitor the whole process at once

I Small failures are difficult to detect

I A system alone can’t recover from failures caused outside its
scope

3/15

Anthony Simonet(Inria) PDP 2015 – Turku, Finland March 4th, 2015



Goals



Goals: Progress Monitoring

5/15

Anthony Simonet(Inria) PDP 2015 – Turku, Finland March 4th, 2015

Globus Catalog Globus 

Detector Local Storage Compute Cluster

1. Local
Transfer

2. Extract
Metadata

3. Globus
Transfer

4. Swift Parallel Analysis

I Get a high-level view of the whole workflow progress

I Generate reports

I Merge several related events in different systems in a single
meaningful notification

I Identify steps that take longer to run than usual



Goals: Automation

6/15

Anthony Simonet(Inria) PDP 2015 – Turku, Finland March 4th, 2015

Globus Catalog Globus 

Detector Local Storage Compute Cluster

1. Local
Transfer

2. Extract
Metadata

3. Globus
Transfer

4. Swift Parallel Analysis

I Automate most human interventions

I Launch transfers

I Create datasets and extract metadata

I Run Swift scripts



Goals: Error Discovery and Recovery

7/15

Anthony Simonet(Inria) PDP 2015 – Turku, Finland March 4th, 2015

Globus Catalog Globus 

Detector Local Storage Compute Cluster

1. Local
Transfer

2. Extract
Metadata

3. Globus
Transfer

4. Swift Parallel Analysis

I Provide each system with a complete view of the whole workflow

I Automatically recover from unexpected events

I Reduce the need for low-level human interventions



System Design



Data Surveillance Framework

9/15

Anthony Simonet(Inria) PDP 2015 – Turku, Finland March 4th, 2015

Life Cycle View

File transferFile Dataset Metadata

Guard

Code Execution

} Tagged Tokens

Notification

Framework features:

I Single namespace for all the files,
datasets and metadata manipulated by
the workflow

I High-level life cycle-centered view of
data

I Runtime data tagging system
I Custom user reaction to data progress

I Custom code execution
I Custom notifications

I Powerful filters based on data tags



Active Data

I Developed at Inria
I Active Data wants to know everything happening to data

1. Construct a model of the data life cycle in each system
2. Connect them in a single end-to-end data life cycle model
3. Give the model as input to Active Data
4. Have every system report data operations to Active Data

I In return Active Data tells you everything, at runtime
1. Declare what events interest you
2. Provide code to run in reaction
3. Get notified

I Centralized Publish/Subscribe

Acquisition

Transfer Analysis

10/15

Anthony Simonet(Inria) PDP 2015 – Turku, Finland March 4th, 2015



Active Data

I Developed at Inria
I Active Data wants to know everything happening to data

1. Construct a model of the data life cycle in each system
2. Connect them in a single end-to-end data life cycle model
3. Give the model as input to Active Data
4. Have every system report data operations to Active Data

I In return Active Data tells you everything, at runtime
1. Declare what events interest you
2. Provide code to run in reaction
3. Get notified

I Centralized Publish/Subscribe

Acquisition Transfer Analysis

10/15

Anthony Simonet(Inria) PDP 2015 – Turku, Finland March 4th, 2015



Active Data

I Developed at Inria
I Active Data wants to know everything happening to data

1. Construct a model of the data life cycle in each system
2. Connect them in a single end-to-end data life cycle model
3. Give the model as input to Active Data
4. Have every system report data operations to Active Data

I In return Active Data tells you everything, at runtime
1. Declare what events interest you
2. Provide code to run in reaction
3. Get notified

I Centralized Publish/Subscribe

Acquisition Transfer Analysis

10/15

Anthony Simonet(Inria) PDP 2015 – Turku, Finland March 4th, 2015



APS Experiment Life Cycle Model

11/15

Anthony Simonet(Inria) PDP 2015 – Turku, Finland March 4th, 2015

Created Start transfer

Terminated

End

Detector

Created

SuccessFailure

SucceededFailed

EndEnd

Terminated

End transfer

Globus transfer

Created

End

Terminated

Start transfer

Shared storage

Created

SuccessFailure

SucceededFailed

EndEnd

Terminated

Start Swift

Globus transfer

CreatedExtract

Update

TerminatedRemove

Globus Catalog

Created

Initialize

Set

End

Failure

Terminated

Derive

Swift

I Single view from detector to analysis

I Each model needs to report to Active
Data



Results



Error Detection & Recovery

13/15

Anthony Simonet(Inria) PDP 2015 – Turku, Finland March 4th, 2015

Example scenario

Recover from system-wide errors: faulty acquired files are detected
only after Swift fails to process them.

In this situation, the user manually:

I Drops the whole dataset

I Removes any associated file and metadata

I Re-acquire the dataset using the same parameters



Error Detection & Recovery

13/15

Anthony Simonet(Inria) PDP 2015 – Turku, Finland March 4th, 2015

Example scenario

Recover from system-wide errors: faulty acquired files are detected
only after Swift fails to process them.

In this situation, the user manually:

I Drops the whole dataset

I Removes any associated file and metadata

I Re-acquire the dataset using the same parameters

Created Start transfer

Terminated

End

Detector

Created

SuccessFailure

SucceededFailed

EndEnd

Terminated

End transfer

Globus transfer

Created

End

Terminated

Start transfer

Shared storage

Created

SuccessFailure

SucceededFailed

EndEnd

Terminated

Start Swift

Globus transfer

CreatedExtract

Update

TerminatedRemove

Globus Catalog

Created

Initialize

Set

End

Failure

Terminated

Derive

Swift



Error Detection & Recovery

14/15

Anthony Simonet(Inria) PDP 2015 – Turku, Finland March 4th, 2015

User code

TransitionHandler handler = new TransitionHandler () {

public void handler(Transition t, boolean isLocal , Token [] inTokens , ↘
→Token[] outTokens) {

// Get the dataset identifier

LifeCycle lc = ad.getLifeCycle(inTokens [0]);

datasetId = lc.getTokens("Shared storage.Created")[0]. getUid ();

// Remove the dataset annotations from the catalog

String url = "https :// catalog.globus.org/dataset/" + datasetId;

Runtime r = Runtime.getRuntime ();

Process p = r.exec("catalog_client.py remove " + url);

p.waitFor ();

// Locally , remove the datasets

String path = "~/aps/" + datasetId;

FileUtils.deleteDirectory(new File(path));

// Publish the "Detector.End"

Token root = lc.getTokens("Detector.Created")[0];

ad.publishTransition("Detector.End", lc);

// Notify the user

sendEmail("user@server.com", "APS - Corrupted dataset " + datasetId);

}

};

ad.subscribeTo("Swift.Failure", handler);



Conclusion

I We proposed an implicit monitoring system for data intensive
applications

I We provided users with intuitive features, making data
management and analysis simpler

I Progress monitoring
I Automation
I Error detection & recovery

I We did not change or alter any of the existing tools

Perspectives:

I Dynamically constructed life cycle models

I Integrate more systems

I Applications to provenance

15/15

Anthony Simonet(Inria) PDP 2015 – Turku, Finland March 4th, 2015



Thank you!

Questions?


	Introduction
	The problem
	The Advanced Photon Source
	Workflow Tools
	Problems with APS

	Goals
	System Design
	Data Surveillance Framework
	Active Data
	APS Experiment Life Cycle Model

	Results
	Error Detection & Recovery

	Conclusion

