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Active Data: A Programming Model to Manage Data
Life Cycle Across Heterogeneous Systems and
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Abstract

The Big Data challenge consists in managing, storing, analyzing and visual-
izing these huge and ever growing data sets to extract sense and knowledge.
As the volume of data grows exponentially, the management of these data be-
comes more complex in proportion. A key point is to handle the complexity
of the data life cycle, i.e. the various operations performed on data: transfer,
archiving, replication, deletion, etc. Indeed, data-intensive applications span
over a large variety of devices and e-infrastructures which implies that many
systems are involved in data management and processing. We propose Active
Data, a programming model to automate and improve the expressiveness of
data management applications. We first define the concept of data life cy-
cle and introduce a formal model that allow to expose data life cycle across
heterogeneous systems and infrastructures. The Active Data programming
model allows code execution at each stage of the data life cycle: routines
provided by programmers are executed when a set of events (creation, repli-
cation, transfer, deletion) happen to any data. We implement and evaluate
the model with four use cases: a storage cache to Amazon-S3, a cooperative
sensor network, an incremental implementation of the MapReduce program-
ming model and automated data provenance tracking across heterogeneous
systems. Altogether, these scenarios illustrate the adequateness of the model
to program applications that manage distributed and dynamic data sets. We
also show that applications that do not leverage on data life cycle can still
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benefit from Active Data to improve their performances.

Keywords: Parallel Programming Model, Distributed and Heterogeneous
Systems, Data Life Cycle

1. Introduction

Increasingly, the industrial innovative breakthroughs and the next scien-
tific discoveries will depend on the capacity to extract knowledge and sense
from the enourmous amount of Big Data information [1]. Examples vary
from processing data provided by scientific instruments such as the CERN’s
LHC, the LSST Telescope in Chile, or the OOI large-scale underwater sensors
network; grabbing, indexing and nearly instantaneously mining and search-
ing the Web; building and traversing the billion-edge social network graphs;
anticipating market and customer trends through multiple channels of infor-
mation. Collecting information from various sources, recognizing patterns
and returning human scale results from this “data deluge” is the new chal-
lenge the community is facing [2].

As the volume of data grows exponentially, the management of these
data becomes more complex in proportion. A key challenge is to handle
the complexity of Data Life Cycle Management (DLCM), i.e. the various
operations performed on data: transfer, archiving, replication, processing,
deletion. . . One can observe two constraints influencing data life cycles. The
first one is due to users and applications that explicitly express operations on
data. For example, a common pattern for the production of scientific data
is the sequence which consists of the following steps: acquisition by a sci-
entific instrument, pre-processing to reduce the size of the data and storage
for further analysis. All the steps of this sequence can be expressed either as
operations on data (e.g., data creation and movement) or computations on
data (e.g., pre-processing). At the moment, such sequences of operations are
programmed independently, which makes the coordination between different
systems such as the instrument, the buffered pre-processing staging, and the
tiered storage difficult to achieve. The second constraint comes from the
infrastructure itself. For instance, data-intense applications often imply that
the data have to be transferred to a set of machines or computer infrastruc-
tures capable of processing them. At several steps during the computation,
intermediate results can be backed-up and final results can be archived or
moved between computing sites. Applications or systems also have the initia-
tive to create or delete data replica in order to optimize the data placement
in term of locality, bandwidth access, security or reliability, which in turn
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increases the complexity of the life cycle. Finally, unpredictable events such
as failures may alter the life cycle as well. As we target more efficient usage
of the infrastructures, there will be a growing need for a stronger interaction
and flow of information between the infrastructure and the DLCM systems.

To alleviate the complexity of data life cycles, solutions are needed to
automate and improve the expressiveness of data management operations.
The first challenge lies in the gigantism of these data sets which requires
distributed storage and parallel processing [3]. Recently, several popular
programming languages and models have emerged, such as MapReduce [4]
or Dryad [5], that offer simple yet high-level data-centric parallel interfaces.
However these languages focus more on processing large data sets than on
specifying management operations on the data. The second challenge is to
capture the dynamicity of the data, i.e the fact that data may be produced in-
crementally, regenerated, modified or temporarily unavailable. Percolator [6]
is an example of a language and its implementation, which takes into consid-
eration data arrival, and incrementally updates the result of a computation
according to modifications of the data sets. The last challenge relies on data
integration, i.e. in the fact that data are distributed not only within a single
infrastructure but also across a large variety of infrastructures and systems.
Thus effective Big Data applications should be able to get a complete end-
to-end view of data life cycles across systems and infrastructures, integrating
the many copies of the same data under a single namespace. This would
allow cross-system optimizations by enabling to coordinate the various sys-
tems handling the data and react both to events happening to the data and
to events happening to the infrastructure. Event-based programming [7] is a
great concept to program distributed applications, which require a high level
of reactiveness and flexibility. However, although the paradigm is appealing,
it lacks a data-centric flavour that would make intuitive and comprehensible
the management of large, distributed and dynamic data across heterogeneous
distributed computing infrastructures.

The solution we propose is Active Data, a formal model for distributed
data life cycles and a programming model to allow code execution at each
stage of the data life cycle. On the one hand, the formal model allows to
describe the life cycle of distributed data; the model can be shared with other
scientists to build DLCM applications, dynamically check that an execution
is valid in regards to the model and integrate dispersed data under a unique
namespace. On the other hand, the programing model borrows from Active
Message the idea of executing user-provided code when certain events occur
(message reception in the case of Active Message [8]). With Active Data,

3



once the data life cycle is known and formally defined, routines provided by
programmers are executed when a set of events (creation, replication, trans-
fer, deletion) happen to any data item. This programming model would
allow to develop a broad range of DLCM applications such as automated
tiered storage, processing at any stage of the life cycle, coordination between
acquisition mechanisms and remote storage, content delivery networks, deep
storage archive, energy efficient storage, incremental workflows, logs process-
ing and monitoring and so forth.

Our contribution is the following: we first present a formalism inspired
by Petri Networks allowing to expose data life cycles in heterogeneous dis-
tributed systems. We show that this model is able to capture the main
stages of data life cycles, namely creation, deletion, scheduling, transfer and
replication as well as transient unavailability. Next, we propose a new pro-
gramming model called Active Data. We report on the design of the Active
Data execution runtime, on its integration with data management systems
and on performance evaluation, namely throughput, latency and overhead of
the system. To evaluate Active Data, we present four use cases that illustrate
the versatility of the framework to program DLCM applications targeted at
distributed and dynamic data sets. The first one shows how to program a
local cache to a remote storage service in few lines of code allowing both per-
formance improvement and cost reduction. The second scenario features a
network of distributed sensors that cooperate to implement data acquisition
throttling. The third example shows that an existing MapReduce runtime
augmented with Active Data can turn into an incremental MapReduce. The
last use-case features data provenance tracking across heterogeneous systems.
We run these scenarios using the experimental platform Grid’5000 [9] and re-
port on the experiments.

The rest of this paper is organized as follows. We introduce the Active
Data programming model and life cycle model in sections 2 and 3 respectively.
The execution runtime system is described in section 4, and experiments in
section 5. We discuss related works in section 6, and in section 7 we conclude
and open discussions about further topics of interest.

2. Active Data Programming Model

In this section, we introduce the Active Data programming model.

2.1. Requirements
The life cycle of data is the course of operational stages through which

data pass from the time when they enter a system to the time when they
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leave it. Data enter the system when they are acquired by an instrument, or
created from some other data already present in the system; they leave the
system when they are physically erased, or when they are moved to a stor-
age outside of the system. Between these two points in time, data progress
through a serie of different stages of development, e.g. migration, duplica-
tion, archive, transfer and so forth. We call data life cycle model a formal
representation of all the possible states and all the valid state transitions of
a data item, when handled by a particular system or by an user application,
e.g. created, duplicated, deleted, backed-up. Data life cycle management,
the sequence of data operations, e.g copy, file transfer, reading, performed
on a data item during its lifetime. Our objective is to provide a formal
and infrastructure agnostic model to describe data life cycles in distributed
systems and a programming model which facilitates data life cycle manage-
ment for developers. We detail the requirements for the life cycle model, the
programming model and its implementation:

• Allow to reason about data life cycle: the formal model must capture
the essential life cycle stages and properties: creation, deletion, faults,
replication and error checking. It must allow system developers to share
the data life cycle model as documentation with their users.

• Allow coordination between multiple systems in different data centers:
Datasets are heavily distributed, making collaboration between sites
and systems necessary, even when those were not designed to collabo-
rate.

• Allow to reason about data sets handled by heterogeneous softwares:
The multiple systems involved in the management and the processing
of datasets may not have been designed to collaborate (this is quite
often the case with legacy software). The data management system
must allow to integrate the multiple copies and identifiers of the same
data concurrently living in various systems.

• Allow data management systems to be extensible: Data life cycles in sci-
entific applications are not fixed in time, in particular because datasets
can be used years after they have been acquired or generated. The
data life cycle management system must be extensible in order to han-
dle every future treatments that scientists may want to execute.

• Incremental processing: Many scientific and commercial applications
treat streams of data, or datasets that are often partially modified. It
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is most of the time unnecessary to run a complete processing workflow
again to incorporate new data and update the results. The data life
cycle management system must offer a granularity of tasks fine enough
to allow treating newly arrived data only, and a system to allow users
to discriminate the updated data from the rest of the data.

• Simplify the programming of applications that implement data life cycle
management: This involves: i) giving applications the ability to oper-
ate on data, ii) informing applications about data life cycle progression
and iii) making their development easy with implicit parallelism.

• Be easy to implement from scratch and to integrate to an existing sys-
tem: This requires a clear methodology for system developers to con-
struct the life cycle model of their systems. The data management
system must also make it easy for scientists to implementation data
management tasks. Integrating the model within a system ignoring
data life cycles should provide optimization of these systems as well.

• Have scalable performances and minimum performance overhead over
existing systems: The data life cycle management system must not
impair the normal system operations. This property is also essential to
encourage the adoption of the system.

2.2. Active Data at a glance
Our response to the above requirements is Active Data, a formal model,

a programming model and a runtime environment, which allow to program
applications by specifying for each step of the data life cycle, the code that
will be executed. In this subsection we give a first overview of Active Data
and a first example, before detailing every aspect of the system in Section 3
and 4.

In a nutshell, Active Data works as follows: data management systems
expose their intrinsic data life cycle according to a well-specified formalism.
We consider each creation, modification or deletion of a data item by the
data management system as a progression of the data item through its life
cycle. We call transition the move of a data item from one state to another
state.

Informally, the programming model proposed by Active Data could be
called of transition-based programing model. A programmer provides a rou-
tine or code that we call transition handler which is executed whenever a
transition is triggered. In other words, when a transition happens to a data
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item, a message (or event) is sent to the other nodes of the system to no-
tify them about the transition and this causes the transition handler code
to be executed. The paradigm used by Active Data to propagate transi-
tions is based on Publish/Subscribe [10]. Data management systems publish
transitions to a centralized service called Active Data Service.

Thus, at the root of Active Data is a representation of data life cycles. We
base our model on Petri Networks [11], which is a formalism and a graphical
tool widely used for the analysis of systems with concurrency and resource
sharing. Petri Nets can depict very intuitively data life cycles: Places, rep-
resented by circles are the states of the life cycle; Transitions, represented
by rectangles are the operations that happen on data items; Tokens, repre-
sented by • in Places, are data items in a particular state of the life cycle.
It is common for distributed systems to deal with data replicas. Each data
replica is represented by a single Petri Net token. Several tokens on different
places represent the individual states of several data replicas distributed on
different nodes.

2.3. Example
To illustrate a data life cycle model, Figure 1 shows a representation of

the “Write-Once, Read-Many” life cycle. A data item starts its life in the
Created place, then is written once (Written place), may be read once
or several times (loop between the Read place and t3 transition) and finally
deleted (Terminated place). In this example, the transition t1 corresponds
to the action of writing data, t3 is triggered when reading data, and t4 cor-
responds to a data item deletion.

Created

t1

Written

t2

Read

t3

t4

Terminated

Figure 1: Representation of the “Write-Once, Read-Many” data life cycle.

We present a short code sample that illustrates how to automatically
perform curation when data get written in the system. Whenever transition
t2 is triggered, the application creates a md5 signature file.

The programmer first writes the handler that contains the checksum com-
putation:
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TransitionHandler md5Handler = new TransitionHandler () {
public void handler(Transition transition , bool isLocal , Token [] ↘

→inTokens , Token [] outTokens) {
MessageDigest md = MessageDigest.getInstance("MD5");
String path = getPath(inTokens [0]. getUid ());
InputStream input = new FileInputStream(path);
byte buffer [] = new byte [2048];

int n = 0;
while ((n = input.read(buffer)) > 0)

md.update(buffer , 0, n);

byte[] digest = md.digest ();
BigInteger bigInt = new BigInteger (1,digest);
String hash = bigInt.toString (16);
while(hash.length () < 32 )

hash = "0" + hash;

OutputStream output = new FileOutputStream(path + ".md5");
output.write(hash.getBytes ());
output.close ();

}
}

Listing 1: md5 sum transition handler

The handler in Listing 1 is a Java object that implements the
TransitionHandler interface. The handler() method is invoked by the
system when the transition is triggered. The first argument is the transition
that was triggered; the second argument indicates whether the transition was
triggered on the same node. Here we do the same thing whether the tran-
sition was triggered locally or remotely. The last two arguments provides
information about the tokens that went through the transition; we use them
to get to the file path of the data item that was written. Then we compute
the file’s md5 sum and write it to a new file.

The programmer further passes the code to the Active Data runtime,
specifying it should be run after transition t2 was triggered:
client.subscribeTo(t2, md5Handler);

Now, every time a process somewhere triggers the transition t2 for any
data item, the handler will be executed asynchronously and the signature file
will be created.

2.4. Application scope
The Active Data programming model offers the opportunity to develop

a broad range of applications covering a wide range of scenarios. However,
our approach differs from (and complements) existing workflow and dataflow
systems [12]; Table 1 summarizes the main differences between Active Data,
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Workflows Dataflows Active Data
Data centric No Yes Yes
Execution model Task sequence Data dependency Event based
Control flow Explicit Implicit None

Monitoring Task completion Data production Data state
change

System integration Difficult (ad-hoc solutions) Easy
Integration
responsibility

Workflow/dataflow
developer or user

System
developer

Table 1: Comparison of Active Data with workflow and dataflow systems

workflows and dataflows using six criteria: 1) whether the approach is data
centric; 2) how the sequence of activities is determined; 3) how activities
are chained and how control is passed from one to the next; 4) what events
are usually monitored in such approaches; 5) how easily different system
representations can be integrated; and 6) who is responsible for integrating
an external system (or tool), for example in the case of Active Data this is
the responsibility of the system developer to make a system “Active Data
enabled”.

Moreover, the scope and the methodology for application development
differs whether the data life cycle is known a priori or has to be defined. We
now review some of the application domains of Active Data.

• Active Data is integrated into a particular data management software,
such as a file storage, a data-flow scheduler or a file transfer service. In
this case, the set of transitions is known by the programmer, so they
can express their program as a set of transition handlers implementing
data operations. For instance, the implementation of Active Data for
BitDew (see Section 4.3) would allow to program a wide range of DLCM
applications such as backup system, distributed checkpoint servers,
collective file operation (scatter/gather, alltoall), data-intense applica-
tions, execution runtimes such as MapReduce or Allpairs, automated-
tiered storage systems etc.

• Particular data management systems which lacks DLCM features. Ac-
tive Data can be integrated after an analysis of the system to extract
the data life cycle. This would provide either additional programming
functionalities, such as in the previous case, or permit specific opti-
mizations to this system.
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• Users also have the possibility to implement from scratch their data life
cycle based on their own needs, that is without any data management
substrate. In this case, the application is expressed as set of opera-
tions on data and the developer takes care of generating the transition
whenever operations are actually performed. In this case, the benefit of
using Active Data is to have a clear specification of the data life cycle.

3. Data Life Cycle Metamodel

Informally, the life cycle model of a data item is the set of all the states
it can have at any time, and the set of transitions that dictate what changes
of state are possible.

In this section we first give our notations and formal definitions for data
life cycle models and present several developments: i) decoration of tokens
to allow unique identification of data replicas, ii) data life cycle termination
rules, that allow to detect errors and illegitimate operations and iii) how
Active Data exposes a unified view of data life cycles even though they involve
several heterogeneous systems.

3.1. Petri Networks
A Petri Net is classically a 5-tuple PN = (P, T, F,W,M0) where:

• P = {p1, p2, . . . , pm} is a finite set of places represented by circles;

• T = {t1, t2, . . . , tn} is a finite set of transitions represented by rectan-
gles;

• F ⊆ (P × T ) ∪ (T × P ) is a set of oriented arcs between places and
transitions and between transitions and places;

• Places in a Petri Net may contain tokens represented by •;

• W : F → N+ is a weight function which indicates how many tokens
every transition consumes and how many tokens it produces;

• M0 : P → N is a function that indicates the initial marking of places.

A transition t ∈ T is enabled if and only if for any place p as {p ∈
P | (p, t) ∈ F}, the number of tokens in p is greater or equal to w(p, t), the
weight of the arc between p and t. If the weight is 1, w is generally omitted
in the visual representation.
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In addition, our definition allows an extension of Petri Networks:
inhibitor arcs. When a transition is connected to a place by an inhibitor arc,
the transition is disabled whenever the place contains at least one token.

In our metamodel, a Petri Network represents the life cycle model for
data in a single system. Petri Net places represent all the possible states of
data items in the system, and Petri Net transitions all the operations that
initiate a change of state. Tokens represent replication: a token is a single
replica, and the place it is on represents the current state of the replica. The
marking or configuration of a Petri Network is the way tokens are distributed
over the places at a given time. As such, and according to, the state of a
data item that is distributed in a system matches the marking on its Petri
Network.

3.2. Definitions
We now formally define our life cycle metamodel by extending Petri Net-

works.

Definition 1. A data life cycle model is a 6-tuple LC = (P, T ∪ T ′, F ∪
F ′, G,W,M0) which represent respectively a set of places, transitions, arcs,
inhibitor arcs, a weight function and an initial marking.

P , T and F represent the data life cycle as exposed by the data management
system. P contains at least the two following places: Created ∈ P is the
start place, representing the creation state of the data item; Terminated ∈
P is the end place, representing the state of the data after it has been per-
manently deleted. In addition, Terminated is a sink:

∀t ∈ T,@(p, t) ∈ (P × T ) | p = Terminated (1)

When a life cycle starts, the corresponding data item has only one replica
on the Created place. So the function M0 is defined as:

M0(p) =

{
1 if p = Created
0 if p ∈ P \ {Created} (2)

T ′, F ′ and G are not part of the actual data life cycle as exposed by the
data management system. Instead they are sets of transitions and arcs added
to the model to ensure properties that we discuss later in this section. Thus
they are neither represented graphically nor exposed to users.
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3.3. Data Identification and Replication
Packed with elements from Petri Networks, our life cycle model is now

able to represent data states, transitions, and replication. However, we need
a way to discriminate tokens and assign them identifiers that links to the
real-life data.

Systems discriminate data items they manage by assigning a unique iden-
tifier to each of them. Later, when the system needs to apply some treatment
to a specific data item, it use its identifier to reference the targeted item.
Data management systems use a variety of conventions for data identifiers;
for example iRODS [13] assigns a property named R_DATA_ID of type Long to
each file; HDFS [14] refers to files using URIs; database records are retrieved
with a reference to the database, a reference to the table and the identifier
of targeted tuple (typically an auto-incremented integer).

Definition 2. The data identifier is the word that uniquely identifies a data
item in a given system. The replica identifier is the word that uniquely iden-
tifies all the replicas of a single data item.

When a data management systems uses replication, it must discriminate
the several replicas of the same data item in addition to discriminating dif-
ferent data items. These systems typically hold two identifiers for the data
they manage: one is what we previously defined as data identifier and is the
same for all replicas; we call the other identifier replica identifier and it is
different for all replicas of the same data (see Definition 2).

To maintain an strong link between a model and the reality it represents,
we decide that the data identifier id attached to each token will always reflect
the real-life identifier of the data item they represent.

Now, we can adjust our metamodel to assign the two identifiers we dis-
cussed to tokens. Let δ be a data item; δ(id, i, p) identifies a replica —or
token— of δ, where id is the data identifier, i is the replica identifier and
p ∈ P is a place. This implies that several data replicas may be in different
states a any given time, as required.

We guarantee the consistency of the metamodel by maintaining the fol-
lowing properties, for δ(id, i, p) and δ′(id′, i′, p′) two replicas of δ:

Property 1. id = id′ iff δ = δ′

Property 2. ∀ id @ δ(id, i, p), δ′(id, i′, p′) | i = i′

12



Equation 2 specifies that each instance of a life cycle model has a single
token, i.e. a data life cycle starts with a single replica. To create additional
data replicas, we use a transition that produces more tokens than it consumes,
such as the self-loop presented in Figure 2. When t1 is fired, it consumes a
single token from place p1; because the weight of the outgoing arc from t1 is 2,
two tokens are produced on place p1. Transition t1 represents the operation
that attributes an identifier to the new token, based on the identifier of the
old token, applying the following rule that ensures Property 1 and Property 2:

δ′(id, i+ 1, p)

In the course of a life cycle, replicas can be deleted without ending the
whole life cycle. We represent the deletion of a replicas by removing the
corresponding token from the Petri Network with a transition that produces
less tokens than it consumes. On Figure 2, transition t2 consumes one token
and produces none (it has no outgoing arc). Thus firing it effectively removes
a token from p1.

3.4. Data Life Cycle Termination
We described how to delete data replicas in the previous subsection. How-

ever, we also need to represent the termination of a data life cycle, i.e. when
the corresponding data item permanently leaves the system. This situation
is difficult to deal with in essence because of lingering references to deleted
data that can persist in large distributed systems.

On one system, the end of a life cycle is represented in the life cycle
model with a token on the Terminated place. After that, no operation
can be performed on the data item, and as such no token can move in the
corresponding model anymore.

G, a set of inhibitor arcs, prevents all the transitions to be fired with any
token. Every transition in T is connected to the Terminated place with an
inhibitor arc in G:

∀t ∈ T, ∃(Terminated, t) ∈ G (3)

p1 t1
1

2

t2

1

Figure 2: Creation and deletion of data replicas. t1 creates a new replicas and t2 deletes
one.
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Created

Terminated

p2

p1 Created

p1

Terminated
t1

t2

t1

t2

tc

Model A Model B

Figure 3: Example of life cycle model composition: a token in model A can be consumed
by tc on start place p1 in order to start a life cycle in B; an other token can be consumed
on place p2 by tt to stop the life cycle in B. Both life cycle models are valid on their own.

At this point, our meta-model has every element to represent the end-
to-end life cycle of any data item in any system. The last missing feature is
the ability to combine the resulting models as one, in order to represent data
that traverse several systems throughout their life cycle.

3.5. Life Cycle Composition
Until now, our metamodel only allows to represent the life cycle of data

in a single system. In order to represent the complete life cycle of data when
it involves several systems, we must be able to represent how data travels
from a system to the other, and how data can be present in several systems
at the same time.

Let us consider two different systems that are unrelated, at the exception
that they are used by the same user application. Informally, we represent a
data item passing from the origin system to the destination system as the
origin Petri Network creating a token for the destination Petri Network.

Formal definition. We give a formal definition for the composition of two life
cycle models that ensures that the composition of a life cycle model remains
a life cycle model. Figure 3 features a first example of composition.

Definition 3. We define that the data life cycle model A =
(PA, TA, FA, GA,WA,MA0), composed with the data life cycle model
B = (PB, TB, FB, GB,WB,MB0) is the data life cycle model
LA,B = (P, T, F,G,W,M0) where:

• P = PA ∪ PB
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Created

p1

p2

p3Terminated

Created p2 Terminatedt1

t2

t3 t4

tc1

tc2

tc3

Model A Model B

Figure 4: Example of life cycle model composition: any of the three composition transitions
(in red) can create a new life cycle in B from a life cycle in A. The choice of the place and
composition transition used to create the new life cycle represent meaningful information
to the users.

• T = TA ∪ TB ∪ Tc(A,B) ∪ Tt(A,B)

• F = FA ∪ FB ∪ F (A,B)

• G = GA ∪GB

Tc(A,B) is the set of composition transitions that link places in A to the
Created place of B. Tt(A,B) is the set of termination transitions that link
places in A to the Terminated place of B.

We note Start(A,B) ∈ P the set of start places from A to B, the set of
places in A that are the input of a composition transition to B. Conversely,
Stop(A,B) ∈ P is the set of stop places that are input of a termination
transition to B.

F (A,B) is the set of arcs that connect composition transitions and ter-
mination transitions to places of A and B. A composition transition is con-
nected to its source place by a double-ended arc, acting as two arcs pointing
in opposite directions.

Definition 3 allows several places in Start(A,B) and Stop(A,B), so sys-
tem developers can represent several entry points from system A to system
B, as illustrated by Figure 4. In addition, the use of double-ended arcs al-
lows tokens consumed by a composition transition to remain on the source
place; this aspect reflects the fact that when a data item is inserted into a
new system, is does not necessarily disappear from the source system.

This definition is very flexible as it allows a life cycle model to be com-
posed with several other models, and even itself; the former case allowing
data derivation.
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Definition 4. We say that a life cycle model A is composed with another
life cycle model B iff Tc(A,B) 6= ∅ ∧ ∀t ∈ Tc(A,B) ∃ (p, t) ∈ F (A,B) ∧
(t, CreatedB) | p ∈ PA.

Composition and Token Identification. According to the definition given in
subsection 3.3, the token —that we note δ(id, i, p)— created in the destina-
tion model is constructed from a token consumed in the source model. The
data identifier assigned to the new token is the same as the existing token
and is identical to the real-life data identifier; the replica identifier is incre-
mented by one relative to the existing token; the new token’s place is the
Created place of the destination model. To satisfy the two constraints on
data identifiers, the first member of the triplet δ(id, i, p) is actually a set of
identifiers. Figure 5 illustrates how the set of identifiers is maintained in
both the already existing and the newly created token when a composition
takes place.

P1

{1234, 1, A.P1}
Created

P1

{{1234, abcd}, 1, A.P1}
Created
{{1234, abcd}, 2, B.Created}

1.

2.

Figure 5: Composition process: the figure presents the state of a portion of life cycle model
around a composition transition. Before the composition transition is triggered (1.), a
token is present on the transition’s source place (P1); after the transition is triggered (2.),
a new token is present on the destination place of the composition transition and shares
the same data identifier as the old token. The identifier is a set containing the real-life
identifiers of the data items they represent.

This way of identifying tokens also offers a strong link between copies
of the same data distributed in non-cooperative systems. Thanks to the
composition transition, it is now possible for a system to have a view of the
whole data life cycle, beyond the scope of the system.

4. System Design

Active Data is composed of two parts: i) the Active Data Service stores
and manages life cycles, receives transition publications and inform clients
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of transitions they have subscribed to; and ii) the client API that executes
code in reaction to transitions and allows systems to inform the Service of
operations they apply on data (transitions). In this section we discuss the
implementation and integration of the Active Data programming model.

4.1. Client Application Programming Interface
We first describe how system developers and users can use Active Data

through its Application Programming Interface (API).

4.1.1. Constructing a new life cycle model
The first step for using Active Data is to construct an object-oriented

representation of the life cycle of data managed by a system. The root of the
model is a class called LifeCycleModel; objects of this class link to Place
and Transition objects. Constructing a LifeCycleModel requires to decide
of a unique system identifier (SID) for the system. This class has methods
for adding places and transitions, that also require names.

LifeCycleModel myModel = new LifeCycleModel("My System");
Place p1 = myModel.addPlace("not executed");
Place p2 = myModel.addPlace("executed");
Transition t = myModel.addTransition("execute");

myModel.addArc(p1, t);
myModel.addArc(t, p2);

4.1.2. Publishing a new life cycle
Active Data users manipulate LifeCycle objects. A LifeCycle repre-

sents a data item in the system —a file in our example; it links to the
LifeCycleModel and contains all the tokens on the right places.

All applications participating in the life cycle of a data item must create
LifeCycle objects to link the files they manipulate to Active Data. After
that, the service saves the state of the life cycles and is able to receive tran-
sition publications regarding them. Informing the service that a new data
item has been created is called publishing a new life cycle.

The arguments required to publish a new life cycle are the life cycle model
and the data item unique identifier.

ActiveDataClient client = ActiveDataClient.getInstance ();
LifeCycle lc = client.createAndPublishLifeCycle(myModel , "xyz");

Sometimes users want to be informed that a new data item has been
created in a particular system. Subscribing to transitions from the model will
delay the information because an arbitrarily long time can pass between the
creation of a data item and its first transition. For this reason, an additional
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transition called create transition is automatically added to each life cycle
model. When a client publishes a new life cycle, the service silently publishes
its create transition. Clients can subscribe to this transition like to any other.
Clients get the create transition from a life cycle model with a method call
on a LifeCycleModel object:

Transition create = appModel.getCreateTransition ();

4.1.3. Publishing transitions
Newly created life cycles have only one token on their Created place.

Applications must move to other places to reflect the progress of data items
through their life cycle.

All applications must notify Active Data of the operations they perform
on data. This is called publishing a transition; transitions must be published
as soon as possible after an operation is performed. Publishing a transition
is a single call:

LifeCycle lc = client.createAndPublishLifeCycle(myModel , "xyz");
...
Transition t = myModel.getTransition("My system.t");
client.publishTransition(t, lc);

The first line is the same as before and just creates a life cycle; the last
two lines get the Transition object by its name and publish it by calling the
publishTransition(Transition, LifeCycle) method of the Active Data
client interface; the transition to publish and the life cycle that is being
updated are given as arguments.

This function call is asynchronous in the sense that it returns imme-
diately, regardless of whether someone has subscribed to the transition or not.

In more complex cases, the transition has several input and/or output
places; in this case (such as the one depicted on Figure 6), the publishing
code must specify: i) What tokens are consumed, and from which input
places; ii) How the output tokens are distributed over the output places.

To specify this behavior, developers can attach a transition dealer
to transitions in the life cycle model. A dealer is a class that ex-
tends the TransitionDealer class and implements the doDeal(LifeCycle,
Transition) method. When implementing the dealer, the publisher has
access to three primitives, which indicate how tokens are consumed and pro-
duced:

consume(Token) indicates that the specified token is consumed by the tran-
sition;
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Figure 6: Transition requiring the publishing process to specify which input tokens are
consumed, and how they are laid out on the output places.

produce(Token, Place) indicates that the specified token is produced by
the transition on the specified place;

produceNewToken(Token, Place) indicates that a new token is produced
by the transition on the specified place.

The dealer —which gets a chance to examine every place and token and
decide which to pick— is called internally by Active Data on the client side
when a process is attempting to publish the transition it is attached to. If
no dealer has been explicitly attached to the transition (which is the general
case) a default transition dealer is present. The behavior of the default
transition dealer is not defined for complex cases such as the one we are
discussing; it is only guaranteed to consume the right number of tokens from
the input places, and to produce the right number of tokens on the output
places. If the number of output tokens is greater than the number of input
tokens, the default dealer produces the necessary number of new tokens by
calling produceNewToken(Token, Place).

Note that a transition dealer may be attached to multiple transitions,
but that a transition can only have one dealer attached. Once the dealer
is attached, it replaces the default behavior and is called each time the
transition is published.

4.1.4. Publishing a composition transition
To inform Active Data of data passing from one system to another, a pro-

cess (usually the one that initiates the operation) must publish a composition
transition every time a data item is sent to an other system.

Publishing a composition transition is similar to publishing a regular tran-
sition, except it requires an additional argument: the unique identifier of the
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// Publish the new life cycle and transition for Model A
String uid = "1234";
LifeCycle lcA = client.createAndPublishLifeCycle(modelA , uid);
...
Transition t1 = modelA.getTransition("Model A.t1");
client.publishTransition(t1 , lcA);

// Effectively send a the data object from A to B, getting the new id from B
String newId = sendDataToB (...)

// Publish the composition transition with Model B
Place p2 = modelA.getPlace("Model A.p2");
Token token = lcA.getTokens(p2).get(0);
Transition comp = modelA.getTransition("Model A.tc");

client.publishCompositionTransition(comp , token , newId);

Listing 2: Publication of a composition transition. The identifier for the new token is
provided by the destination system, then passed to Active Data.

data item in the new system. Listing 2 demonstrates how to publish the
composition transition on figure 3.

Here, the composition transition consumes the first token present on the
p2 place. This token’s unique identifier is “1234”; the publishing process
initiates the transfer of the data item from A to B. B returns the identifier
it has locally assigned to the data item. When the publishing process
publishes the composition transition with this identifier, Active Data creates
a new token on the Created place of system B.

Because composition transitions only consume one token and produce a
single new token on one place, no transition dealer is ever needed. The only
question is which token is consumed by the transition, and it is answered
directly in the call.

4.1.5. Transition handlers
Transition handlers are the code provided by the programmer, that are

to be executed whenever DLC transitions happen. A first transition handler
was presented in Listing 1.

A handler is an object that implements the TransitionHandler interface
and the handler method. The method receives four arguments that provide
the context necessary to write flexible code:

transition is the object representing the transition that was published and
caused this handler to be executed;

20



isLocal is true only if the client running the handler is the same client
that published the transition (this is valid because in Active Data every
client can be both subscriber and publisher);

inTokens the set of tokens that were consumed by the transition;

outTokens the set of tokens that were produced by the transition.

The handler is able to examines the tokens consumed and produced by
the transition, to extract their unique identifier and uses them to access the
real data. Additionally, tokens also link to the complete LifeCycle object
which allows to observe where the other tokens are located, and examine
the complete state of the data.

The Transition argument allows to tie the same handler code to several
transitions. In addition, the same TransitionHandler object is used by
Active Data every time in needs to be executed; in other words, transition
handlers can be stateful. For example, a user may not want to be notified
every time a transition is published; instead they might want the handler to
notify them each n times the handler is executed instead.

4.1.6. Transition subscription
The transition handlers must be attached to a transition to be executed

after the transition is published. This action is called subscribing to a tran-
sition.

Because many data items share the same life cycle model, the number of
transitions being published can grow rapidly. However, users usually want
their handlers to be executed only when it is relevant to them, and ignore
everything else. Active Data allows programmers to cut down the number
of transitions their code will react to by providing two kinds subscriptions:
i) subscribing to a specific transition for any data item and ii) subscribing
to a specific data item for any life cycle transitions.

Paying close attention to the example handlers in Listings 1, we notice
that the value of the Transition argument is never tested; in these cases it
is not needed, because these handlers are meant to be subscribed to a single
transition only.

There is a second type of subscription that allows to be notified of every
transition, but only for a particular life cycle:

TransitionHandler handler = new TransitionHandler () {
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public void handler(Transition transition , bool isLocal , Token [] ↘
→inTokens , Token [] outTokens) {

........
}

};

// Create a life cycle , then subscribe to it
LifeCycle lc = client.createAndPublishLifeCycle(appModel , uid);
client.subscribeTo(lc, handler);

4.1.7. Querying Life Cycles
The LifeCycle class allows to examine all places, transitions and tokens

for any data item. Active Data offers a querying interface that allows any
programmer to obtain the complete life cycle of any data item, no matter
where their code is running.

Users query a life cycle with a couple (SID,UID). Through composition,
a life cycle is identified by as many such couples as there are systems in the
life cycle. However, only one is necessary, allowing code with a very partial
view expand it to the whole life cycle.

For example, consider a storage system composed with an execution sys-
tem. A client of the storage system would like to discover the state of the
computation in which a particular file is involved. The client knows that the
identifier of the storage system is “storage” and that locally, the identifier of
their file is, for example, the integer 36253.

Listing 3 shows how the client can use Active Data to discover i) the iden-
tifier of their file in the execution system, and ii) the state of the application.

String storageSID = "storage";
String storageUID = "36253";

ActiveDataClient client = ActiveDataClient.getInstance ();
LifeCycle lifeCycle = client.getLifeCycle(storageSID , storageUID);

for(Place p: modelB.getPlaces ())
for(Token t: lifeCycle.getTokens(p))

print("Token with id " + t.getUid () + " is on place " + p.getName ();

Listing 3: Querying the complete life cycle of a data item from a partial knowledge. Active
Data returns the complete LifeCycle object with all the tokens in every system.

The query feature is an important building block for data integration:
Active Data integrates under a single namespace the identifiers of the same
data from different systems that were not designed to collaborate and pro-
vides them to users and any process.
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Figure 7: Architecture of Active Data

4.2. System Architecture
The architecture of Active Data is illustrated by Figure 7; it is composed

of the centralized Active Data Service and of clients communicating with the
service using the client API.

For the Active Data Service, managing life cycles has two functions: i)
maintaining the current state of each life cycle and ii) allowing clients to
query life cycles. The fact that the service is centralized allows it to easily
maintain the consistency of life cycles.

Clients of the Active Data Service are of kinds:

• Data management systems and user applications are client of the Active
Data Service when they publish transitions; sometimes the same client
that publishes transitions can subscribe to handlers;

• end users are clients of the Active Data Service when they query the
state of life cycles and subscribe handlers to get notifications or run
local code.

4.2.1. Active Data Service
The Active Data programing model being based on two main operations

that are publishing transitions and subscribing handlers, it seems natural
to use the Publish/Subscribe paradigm [10] for client-server communication.
To accommodate the two types of clients of Active Data, every client can be
both publisher and subscriber at the same time.

The Active Data Service maintains data structures that link each transi-
tion to a set of subscriptions, and a messaging queue for each client. Then,
when a client publishes a transition, the service issues an event for each sub-
scribed client and places it in the client’s queue. Events are placed in the
queue in the order they arrived on the service, meaning the service maintains
a total order on events. Subscribers regularly make requests to the service

23



to get all the events in their queue, after which the service clears it. Finally
clients can locally run their handlers according to the information contained
in events: which transition was published, and on which life cycle.

The frequency at which clients pull events from the service in an impor-
tant parameter; by default, it is set to 60 seconds and can be set to a different
value by each client. A short pull frequency makes a system more reactive
(the time between a transition publication and handler execution is smaller)
but creates a heavier load on the service. However, the event-driven design
and the small time required to publish a transition and pulling events allow
it to handle a system with thousands of life cycles and clients.

4.2.2. Execution model
The client regularly pulls events from the service, that contain the tran-

sitions published, and the corresponding life cycle. Once the transitions list
is received, the client executes the associated handlers. The handlers are
run serially, in a blocking way. Because the events in the queue are totally
ordered, the handlers are run in the order the transitions were received by
the service. If several handlers were subscribed for the same transition or
life cycle, the order in which they are executed is unspecified. Handlers must
return shortly to avoid blocking the local queue and therefore, it is recom-
mended to perform any lengthy operation in a separate thread. In the case
when a handler would take a long time to run, it would not block the entire
system, but only the local execution queue.

4.2.3. Verification
Detecting incorrect behavior of processes in large distributed systems is

very difficult in nature. Focusing on the progress of data life cycle, incorrect
steps can be detected very early, as soon as an operation attempts to modify
the state of a data item in a way that is not valid with respect to the life
cycle model.

Coupling the life cycle meta-model with the service-side runtime envi-
ronment allows model checking, or runtime verification. Every time a client
attempts to publish a transition through the API, the Active Data Service
checks the request against the life cycle in two ways:

• The transition published must be valid (i.e. be part of the concerned
life cycle) and enabled;

• the tokens specified by the transition dealer must be on the place the
dealer claims they are.
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This verification allows to maintain a consistent life cycle on the service,
forbidding several clients to consume several times the same tokens with one
or different transitions. Additionally, the service raises an exception each
time a client tries to publish a transition in a way that violate the model,
making client processes fail early.

4.2.4. Consistency
When a client makes a query to the Active Data Service for the current

state of a life cycle, the returned object might already be out-of-date; this
happens when another client publishes a transition between the moment
when the service returns the life cycle and the client gets a chance to examine
it. This implies that the view that clients have of life cycles can always be
inconsistent with the actual state of the life cycle, and that the only consistent
copy of a life cycle is the one that exists on the service. It is neither good
practice nor efficient to subscribe to all transitions to keep a local up-to-date
copy of a life cycle because this creates an unnecessary load on the service
and the client and does not prevent inconsistencies.

4.3. Systems Integration
We report now on the integration of Active Data with five widely used

data management systems. BitDew [15] is a middleware developed by INRIA
for easy data management on various distributed infrastructures; it offers a
programmable environment, a data scheduler and a reliable file transfer ser-
vice. The inotify Linux kernel subsystem [16] allows to watch a directory
and receive events about the files it contains, such as creation, modification,
write, movement and deletion. iRODS [13] is a rule-oriented data man-
agement system developed at the DICE center at the University of North
Carolina. iRODS provides a virtual data collections of distributed data, a
metadata catalog and replication. Globus Online [17] is a file transfer service
developed at the Argonne National Laboratory, which offers researchers a
fast, simple and reliable way to transfer large volumes of data. Hadoop [18]
is a project maintained by the Apache Software Foundation that includes a
widely used implementation of the MapReduce [4] programming model and
a distributed file system called HDFS [14].

When integrating Active Data into a legacy system, it is necessary to un-
derstand how the system exposes its life cycle, in order to detect and convey
life cycle transitions. The main approach consists in relying on notifications
provided by the system, and publishing these notifications in terms of Active
Data transitions. For instance, inotify provides a notification service, which
wakes up programs when files are altered on the file system. inotify informs
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about the new state of the file, thus it is easy to deduct the corresponding
place, and publish the corresponding transition. When such a notification
service is not available, a second approach is to look at the internals of the
system. For instance, iRODS relies on a PostgreSQL database. We imple-
mented a trigger executed by the database each time a file is created or
modified in iRODS. The trigger acts as an Active Data proxy and forwards
only relevant life cycle transitions to the Active Data Service. A third ap-
proach is to deduce data-related events from a system’s logs. In the case of
Hadoop, for example, the submission, start and completion of jobs and tasks
is reported on the job tracker and task trackers logs. A lightweight scraper
is executed on every machine of the cluster, watches the logs and publishes
the corresponding transitions. Overall, we think there exist many sources of
information to obtain complete or partial representations of data life cycles
in a non-intrusive fashion: logs, email notifications, databases and so forth.

For each system, we have to represent its data life cycle model. Systems
that expose only partially their life cycle make this task intricate: this is
the case for Globus Online and iRODS. As Globus Online source code is
not available, we have an incomplete knowledge of the file transfer life cy-
cle. However, Globus Online emails the user upon successful file transfer
completion or failure. From this partial information, we reconstruct the life
cycle model presented in Figure 8d and enable Active Data users to monitor
Globus Online transfers. With iRODS, we do not need the whole iRODS
data life cycle and chose to represent only the portion that is relevant to our
application (see 5.3.4). This model is represented in Figure 8c.

Conversely, two data life cycles are complete: inotify, BitDew. Figure 8b
presents the inotify life cycle model constructed from its documentation.

Reading the source code of BitDew, we observe that data items are man-
aged by instances of the Data class, and this class has the status variable
which holds the data item state. Therefore, we simply deduce from the enu-
meration of the possible value of status the set of corresponding places in
the Petri Net (see Figure 8a). By further analyzing the source code, we con-
struct the model and summarize how high level DLCM features are modelized
using Active Data model:

Scheduling and replication Part of the complexity of the data life
cycle in BitDew comes from the Data Scheduler that places data on nodes.
Whenever a data item is placed on a node, a new replica is created. We
represent replicas with a loop on the Placed state that creates an additional
token every time a token passes through it.

Fault tolerance Because one of BitDew’s target architectures is Desktop
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Grids, it must deal with frequent faults, i.e. nodes going offline. When a
data item is placed on a node, and the node disappears from the system, it
is marked with a Lost state and will be placed on an other node. This is
represented by the loop Placed, Lost, ToPlace.

Composition of File Transfer and Data Scheduler In BitDew, the
Data Scheduler and File Transfer Service are closely related, and so are their
life cycles. A file transfer cannot exist without an associated data item, and
a deleted data item cannot be transferred. To connect the two Petri Nets
we need to define the start and stop places as explained in section 3.5. In
BitDew, a new file transfer can be started for a Data object in any state,
except Terminated, Lost and Loop. To represent this, we define all the
places but the three mentioned above as start places and connect them to
the transfer life cycle model.

The life cycle model Hadoop represents the life cycle of a file used as
input for a Hadoop MapReduce job. Because the input and output files
of a Hadoop job are stored in HDFS, the life cycle model of Hadoop is
connected to the life cycle model of HDFS. The life cycle model for Hadoop
and HDFS presented on Figure 8e is composed of two separate models; the
one on the left represents the life cycle of a file stored in HDFS with a coarse
granularity (only one transition is included) because not enough meaningful
information can be extracted from the logs yet; the one on the right represents
the life cycle of a file during a Hadoop job. The Hadoop model features
transitions for job submission and termination, and map and reduce tasks
submission, distribution, launch and termination (Submit map, Assign map,
Start map, End map etc.). It also represents data transfers during the shuffle
phase (transition Shuffle). A second composition transition called Derive
represents the production of one or several output files in HDFS.

5. Experimental Evaluation

In this section we report on experimental evaluation of the prototype us-
ing micro-benchmarks and use-case scenarios. Experiments are run on a clus-
ter of the Grid’5000 experimental platform [9] composed of 92 2-CPU nodes.
Each CPU is an Intel Xeon L5420 with 4 cores running at 2.5Ghz. Each node
is equipped with 16GB of RAM and a 320GB Sata II hard drive. Nodes are
interconnected with Gigabit Ethernet and are running Linux 2.6.32.

5.1. Performance Evaluation
To evaluate the performance in terms of throughput, latency and over-

head, we conduct a set of benchmarks based on the version 0.1.2 of the
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Figure 9: Average number of transitions per second handled by the Active Data Service

prototype1.
Throughput is measured as the number of transitions that Active Data

is able to handle per second. In order to stress the system we run one Active
Data server and a varying number of clients (one per cluster node), which
publish 10,000 transitions in a loop without a pause between the iterations.
Figure 9 plots the average number of transitions processed per second against
the number of clients. Once saturated, the Active Data Service can handle
up to 32,000 transitions per second.

We evaluate the latency, i.e the time to create of a new life cycle and to
publish a transition, and the overhead, i.e the additional time incurred by the
Active Data runtime environment. We use the BitDew file transfer operation
as a reference to measure the overhead. The experiment consists in creating
and uploading 1,000 files (1KB to stress the system) in a single burst. When
Active Data is enabled, more than 6,000 transitions are published during the
files’ transfer. The execution time is recorded with and without Active Data.

Table 2 shows the median, 90th centile and standard deviation for the
latency in milliseconds, when the service and the client run on the same
node (local) and on two different machines (Ether). The overhead is given
in seconds and as a percentage compared with the vanilla BitDew. We can
observe that latency is in the order of the millisecond, with a remarkable
stability. The overhead, even when the system is highly stressed, remains less
than 5%. All together, these experiments demonstrate that our prototype

1Active Data is free software, available under the GPL licence http://active-
data.gforge.inria.fr
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Latency
med 90th centile std dev

Local 0.77 ms 0.81 ms 18.68 ms
Eth. 1.25 ms 1.45 ms 12.97 ms

Overhead Eth. w/o AD with AD
38.04 s 40.6 s (4.6%)

Table 2: Latency in milliseconds for life cycle creation and transition publication and
overhead measured using BitDew file transfers with and without Active Data.

implementation performs well enough to provide reactivity and scalability,
and is fully able to handle the case studies presented in the next section.

5.2. Hadoop benchmarks
To complete the performance evaluation presented in the last subsection,

we evaluate Active Data’s performances against a real life workload. To this
end we use the life cycle model of files in HDFS and Hadoop and run an
intensive sorting benchmark on a 1TB dataset. Active Data must be able
to handle the many transition publications induced by the map and reduce
tasks.

We execute the Terasort benchmark on a cluster of 45 nodes, each having
two 4-core Intel Xeon L5520 CPUs running at 2.26GHz, 32GB of memory
and two 300GB hard drives. The nodes are interconnected with gigabyte
ethernet. We run the Active Data Service alone on one node and we setup
Hadoop to run a mapper or reducer on every core of the remaining nodes.
Thus on this setup we run 280 mappers and we decide to run 70 reducers.

The Terasort benchmark runs in two phases: a random dataset is
generated by a first job called Teragen that we do not monitor, then the
actual Terasort job is executed to sort it. The Active Data Service records
how many transition publications it performs every second, like in the last
subsection. Figure 10 plots the resulting data; after a peak during the first
few seconds of the job, the number of transitions per second is relatively
low as map and reduce tasks progress. The first peak is due to the many
Submit map, Submit reduce, Assign map and Assign reduce transitions that
are published in a burst when the job tracker starts the job and partitions
the workload. During this first peak, a maximum of 196 transitions per
second is recorded. After this, transitions are published at a much slower
pace of 3 per second on average with a standard deviation of only 5, as map
and reduce tasks complete.
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Figure 10: Number of transitions published each second during the Hadoop Terasort
execution.

This benchmark confirms our intuition that the 32,000 transitions per
seconds limit gives enough margin to handle real-life applications like sorting
1TB of data with Hadoop.

5.3. Case studies
We conduct four case studies to evaluate the ability of the Active Data

programming model to deal with complex data management scenarios. These
case studies present problems that we express in terms of transitions in the
life cycle.

• Active Data allows to write distributed applications based on data life
cycle transitions. In the first example, we show how to implement a
storage cache between an application and the remote Cloud storage
Amazon S3. We present the cache policy and describe its implemen-
tation based on transitions triggered during file transfers. Experiment
shows that a simple cache, programmed in few dozen lines of codes can
effectively both improve performances and decrease Cloud usage costs.

• Active Data can model data life cycle in existing systems and allows
the programmer to manage data sets distributed across systems or in-
frastructures. To illustrate this, we implement a “distributed” inotify
thanks to Active Data. We present a case study fairly usual in Big Data
science, where a set of sensors coordinates to implement data acquisi-
tion throttling, pre-processing to reduce the data size and archiving to
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a remote storage site. This scenario implies coordination between a set
of local storage; a scenario difficult to achieve using ad-hoc scripting
solutions.

• Active Data allows to react to dynamic data, such as a data set that
dynamically grows or shrinks or gets partly modified. We show that
Active Data can optimize systems that do not fully take into account
the life cycle of data. In the third use case, we present an incremental
MapReduce that leverages the Active Data model with dynamic data.
We modify an existing MapReduce implementation [19] so that it in-
crementally updates the result of a MapReduce computation when a
subset of the input data is modified.

• Active Data can expose to the programmer a single data life cycle, even
if data items are managed by several heterogeneous systems. The last
scenario presents the construction of a unified life cycle model based
on the composition of two different systems: iRods and Globus Online.
Thanks to this model, we present an application which automatically
keeps track of data items provenance when they move from one system
to the other.

We evaluate the uses-cases against four criteria that are representative of
the systems and application class we support:

• The unique high-level view of data life cycles offered by Active Data
must allow users to implement cross-system optimizations;

• The global namespace maintained by Active Data must allow to in-
tegrate in the same scope data objects from several non-cooperative
systems;

• The programming model must allow to program distributed data life
cycle management tasks easily, benefiting from implicit parallelism;

• The event driven model must allow to program applications able to
react to changing data.

5.3.1. Storage cache
This scenario demonstrates the ability and the easiness to program dis-

tributed applications with Active Data. To this end, we study the case
of implementing a storage cache between a computing infrastructure and a
storage backend in terms of data transitions. Storage caches are widely used
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by scientific applications to minimize cost, network bandwidth, latency and
energy consumption.

We consider a cache between a computer infrastructure and the Ama-
zon Simple Storage Service [20] (S3). S3 users pay according to the storage
space used, the number of put and get requests performed and the amount
of data transferred from and to the S3 storage. Caching S3 avoids unneces-
sary data transfers to and from S3 which both improves the performances of
applications accessing S3 data and decreases the S3 usage cost. The cache
application has to determine when data are present or not in the cache and
perform the necessary file transfers accordingly. In terms of data life cycle
this translates in reacting to file transfer events, i.e when a file transfer starts
or ends. Our implementation relies on Active Data and BitDew and exploits
the File Transfer life cycle in Figure 8a.

Clients are connected to the cache application that runs on a local server
node and uses a fixed portion of its local storage. The cache is also a client of
the Amazon S3 platform. Because we assume that the cache can possibly fail,
we implement a write-through cache policy in order to have a durable copy
of each data written to the cache. The cache application can be expressed
with only two transfer transitions:

• t1 (transfer begins) is observed by the cache. If the handler detects
the transfer is a get from the cache, it checks if the data item is in the
cache. If it is (cache hit), the handler serves it from the cache; if the
data item is not in the cache (cache miss), the handler gets it from
Amazon S3 and then serves the data item from the cache.

• t9 (transfer ends) is observed from the cache as well. If the handler
detects it is a put in the cache, it transfers the same data item to
Amazon S3; local data can be deleted according to the cache eviction
policy.

We evaluate the cache with a scenario which mimics a master/worker
computation involving 10 clients, a 5Gb cache server and the Amazon S3
service. The master first transfers three files to the Amazon S3: a 200MB
program to be run by all client nodes and 2 input data-sets (50MB and
100MB). Once the files are available, each client downloads the program.
Half of the clients download the smallest data-set, the others download the
largest. Table 3 shows that using the storage cache avoided performing 1.9 Gb
of unnecessary data transfers from Amazon S3, cutting the costs by 43%.

This scenario illustrate the ability to rapidly prototype data management
application with Active Data: the source code is less than 100 lines of code
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w cache w/o cache Difference
In 2350 Mb 2350 Mb 0 Mb
Out 0.15 Mb 1976.17 Mb 1976.02 Mb
#Put 13 13 0
#Get 0 20 20
Dollars 0.3 0.53 0.23

Table 3: Cache experiment evaluation

and can be developed in a day. It is distributed and yet requires no synchro-
nization, no thread spawning and no forking.

5.3.2. Collaborative Sensor Network
This case study illustrates: i) the adaptability to legacy data management

systems, ii) the ability to develop distributed applications that support in-
dependent data life cycles distributed over several local systems and iii) how
easy it is to implement coordination between distributed nodes with Active
Data.

It is a common practice for applications acquiring data —for example
from a sensor network— to apply some pre-processing before being pushed
on a computing platform and archived. Pre-processing can be used to filter,
compress data or remove invalid data. Such a sequence of operations can eas-
ily be scripted using ad-hoc languages or programs. Data throttling is also
a common practice to reduce the amount of data injected in the system at
a given time. Decentralize data throttling enables to reduce the load on the
system by dropping data before they are injected. However, it requires co-
ordination between the sensors, which can be made possible when expressed
with Active Data.

Here we consider a system where large high-resolution images are acquired
from a network of cameras, each connected to its own pre-processing node.
Images are regularly written on these nodes’ filesystems in the TIFF for-
mat. The images are large, so each node must independently perform some
pre-processing to compress them in the JPEG format. Then the resulting
JPEG files are transferred to a distributed storage system where they will
be available for further processing. In addition to this, we want the nodes to
perform decentralized data throttling: they must drop TIFF images received
from their camera if the global number of images pre-processed p during a
defined time window w in seconds reaches a threshold n.

As soon as a camera writes an image file on a node’s filesystem, it is
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considered as a newly created data item and its life cycle begins. To capture
these transitions on files, we use the inotify Linux kernel subsystem. Inotify
allows to watch a directory and receive events about the files it contains.
Events regard file creations, modifications, writes, movements and deletions.
As inotify events represent filesystem events, and filesystems contain data
(files) that are subject to transitions, we can represent inotify events with
an Active Data model. Figure 8b presents the inotify Active Data model,
constructed using the method described in section 4.3. The combination
of Active Data and inotify creates a distributed inotify : all nodes can now
coordinate based on transitions happening on other nodes’ filesystems.

Now that sensor nodes can react to remote filesystem transitions, we can
express our problem in terms of Active Data transitions. Nodes locally run
a program that reads inotify events from their Linux kernel and publishes
the corresponding Active Data transition to all the other nodes. Each node
also independently runs a program to react to two types of Active Data
transitions:

• t12: we check if the transition is local or remote: if it is remote and
if the associated file is a JPEG image, then a TIFF image has been
pre-processed on a remote sensor and we increment the local counter
p.

• t5: if the transition is local, we check the associated file type: if it is
TIFF, we compare p to n and pre-process the file only if p < n.

Every w seconds, each node sets its counter p to 0.
We implement and evaluate a simple scenario with 10 machines, each

randomly downloading 5 TIFF images (between 121MB and 502MB) in a
watched directory. We implement and configure the Active Data handlers
for n = 3 and w = 30 seconds.

Figure 11 presents the Gantt chart of the scenario which lasts 279 seconds,
where each numbered pair of lines represent the activity of one sensor. Red
bars plot data acquisition times, yellow bars plot data pre-processing and
the green bars plot the upload time of pre-processed data. On each sensor,
data acquisition and pre-processing and upload are effectively performed in
parallel. We see that the system behaves as expected: for example in the time
window [60,90], 8 new JPEG images have been downloaded on the nodes, but
only 3 have been pre-processed. The other images have been dropped.

This scenario illustrate a powerful feature : Active Data can easily turn
into a distributed system, any local system that is able to expose its local
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Figure 11: Collaborative network of 10 sensors: the x axis plots the time in seconds, for
a window size w = 30 seconds (illustrated by dashed lines).

data life cycle. It also demonstrates the ease with which distributed data life
cycle management tasks can be expressed with Active Data.

5.3.3. Incremental MapReduce
In this case study, we investigate if an existing system can be optimized

by leveraging on Active Data’s ability to cope with dynamic data.
One of the strongest limitations of MapReduce is its inefficiency to handle

mutating data; when a MapReduce job is run several times and only a subset
of its input data set has changed between two job executions, all map and
reduce tasks must be run again. Making MapReduce incremental i.e. re-run
map and reduce tasks only for the data input chunks that have changed,
necessitates to modify the complex data flow of MapReduce. However, if the
MapReduce framework becomes aware of the life cycle of the data involved,
it can dynamically adapt the computation to data modification.

We consider the MapReduce implementation made on top of the BitDew
storage system [19]. In this implementation, a master node places the input
data chunks in the BitDew storage and launches a MapReduce execution,
whose map and reduce tasks are respectively executed by mappers and re-
ducers. However, input data can be updated directly in the storage by exter-
nal applications. To make the MapReduce implementation incremental, we
simply add a “dirty” flag to the input data chunks. When a chunk is flagged
as dirty, the mapper that previously mapped the chunk executes again the
map task on the new chunk content and sends the updated intermediate re-
sults to the reducers. Otherwise, the mapper returns the intermediate data
previously memoized. Reducers proceed as usual to compute again the final
result. To update the chunk’s dirty flag, we need the master and the mappers
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Fraction modified 20% 40% 60% 80%
Update time 27% 49% 71% 94%

Table 4: Incremental MapReduce: time to update the result compared with the fraction
of the dataset modified.

to react to transitions in the life cycle of the chunks. More precisely, nodes
listen to two transitions triggered by the storage system, thanks to Active
Data:

• t3 is observed by the master node. When this transition is triggered,
the master node checks whether the transfer is local and whether it
modifies an input chunk. Such case happens when the master puts all
the data chunks in the storage system before launching the job. If both
conditions are true, the transition handler flags the chunk as dirty.

• t1 is observed by the mappers. When this transition is fired, mappers
check whether the transfer is distant and if one of their input chunks is
modified. In this case, the transition handler on the mapper flags the
chunk as dirty.

To evaluate the performance of incremental MapReduce, we compare the
time to process the full data set compared with the time to update the result
after modifying a part of the dataset. The experiment is configured as follows;
the benchmark is the word count application running with 10 mappers and 5
reducers, the data set is 3.2 GB split in 200 chunks. Table 4 presents the time
to update the result with respect to the original computation time when a
varying fraction of the dataset is modified. As expected, the less the dataset
is modified, the less time it takes to update the result: it takes 27% of the
original computation time to update the result when 20% of the data chunks
are modified. However, there is an overhead due to the fact that the shuffle
and the reduce phase are fully executed in our implementation. In addition,
the modified chunks are not evenly distributed amongst the nodes, which
provokes a load imbalance. Further optimizations would possibly decrease
the overhead but would require significant modification of the MapReduce
runtime. However, thanks to Active Data, we demonstrate how the system
was optimized to reach a significant speedup with a patch that impacts less
than 2% of the MapReduce runtime source code.
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5.3.4. Data Provenance
Data provenance constitutes the complete history of derivations and treat-

ments throughout data life cycle, and is essential to preserve the quality of
scientific data asset over time. Reconstructing this history gets very com-
plicated when multiple data management systems and infrastructures co-
operate. It is even more challenging when the data management systems
involved are loosely coupled or do not communicate at all, because we lose
the causality between data management operations.

Research on data provenance is heading towards automated provenance
collection and Provenance-Aware Storage Systems (PASS) [21]. A PASS
is a storage system that records and maintains provenance automatically,
based on the analysis of client requests. A strong limit of PASS is that the
provenance information they provide is bound to what the storage system
sees of data life cycles.

We consider a scenario where Active Data receives events regarding data
evolving in two systems completely independent. To mimic cooperation of
data management systems within data centric infrastructures, our scenario
features one service to handle file transfers (Globus Online) and one software
to store data and provide a metadata catalog (iRODS).

Created

SuccessFailure

SucceededFailed

End successEnd failure

Terminated

t10

Id: {GO: 7b9e02c4-925d-11e2}

Created

Written

Terminated

Put

OverwriteGet

Remove

Id: {GO: 7b9e02c4-925d-11e2,
iRODS: 10032}

public void handler () {
annotate ();

}

Globus Online iRODS

public void handler () {
iput (...);

}

Figure 12: Composition of Globus Online and iRODS: the figure presents the two life
cycle models connected by a composition transition as well as the token identifiers and
transition handlers.

In our scenario, for any data file in iRODS, we want to record file transfer
provenance: the transfer endpoints, start and completion times, transfer
failures. Active Data is the glue that enables both Globus Online and iRODS
to see the part of data life cycles that is outside their scope. We use iRODS’s
user-defined metadata to record provenance information along with data files.
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Figure 8d represents the life cycles of data in Globus Online and iRODS.
When a Globus Online file transfer starts, a transfer task is created and the
returned Task Id becomes the token identifier.

To compose the two life cycles, the place Succeeded from Globus On-
line is a start place which creates a token in the iRODS life cycle model.
The reception of a “success” email notification causes transition Success to
be triggered, and a handler to store the file in iRODS using the put com-
mand. iRODS returns a DATA_ID that is added to the token in iRODS by
the composition transition; it now contains both identifiers.

A second transition handler is attached to iRODS’s Put transition: it
is executed when any iRODS data is written the first time, right after its
creation. This handler requests the life cycle from the Active Data Service
to see if it contains a Globus Online identifier. In such case, it uses the token
identifier to query Globus Online and get file transfer information.

To demonstrate our solution, file transfers are launched from a remote
Globus Online endpoint to a local temporary storage every few seconds. We
observe that when a transfer ends, it appears immediately in the iRODS data
catalog with the correct Globus Online Task Id and meta-data information
(endpoint, completion date, request time). Listing 4 shows the metadata set
for one of these iRODS files after the transfer is done.
$ imeta ls -d test/out_test_4628
AVUs defined for dataObj test/out_test_4628:
attribute: GO_FAULTS
value: 0
----
attribute: GO_COMPLETION_TIME
value: 2013 -03 -21 19:28:41Z
----
attribute: GO_REQUEST_TIME
value: 2013 -03 -21 19:28:17Z
----
attribute: GO_TASK_ID
value: 7b9e02c4 -925d-11e2 -97ce -123139404 f2e
----
attribute: GO_SOURCE
value: go#ep1/~/ test
----
attribute: GO_DESTINATION
value: asimonet#fraise /~/ out_test_4628

Listing 4: Metadata associated to an iRODS data file transferred with Globus Online

The global and unique namespace provided by Active Data of datasets
over heterogeneous and non-cooperative systems significantly simplifies the
challenge of global provenance reconstruction. In addition, we have demon-
strated that systems can be extended to do more, thanks to the information
from outside their scope provided by Active Data.
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6. Related Work

In this section, we review existing programming models for data-centric
and distributed applications as well as popular distributed storage systems
and argue that they are inadequate for supporting DLCM applications.

The Big Data challenge has renewed the approach to parallel program-
ming in many aspects. MapReduce [4], introduced by Google in 2004, is
a good example of this quest for new paradigms to simplify the processing
and generation of large data sets. In the wake of MapReduce, several other
data-centric languages have emerged, either as alternative, e.g, Dryad [5] for
dataflow parallel computing, Allpairs [22] to perform massive pair-wise com-
parisons in large data sets, or as evolution of the paradigm, e.g., PigLatin [23]
to provide high level query interface on top of MapReduce, Twister [24], a
framework for iterative MapReduce computations, to cite a few of them.

Because data sets are dynamic, i.e., may grow or shrink in time, or be
partly modified, there is a need for frameworks which adapt to data change
and are in particular optimized for incremental computation, i.e. where a
single change in the data set does not trigger the whole computation re-
execution. Percolator [6] presents a programming model and an implemen-
tation for incrementally process multi-petabytes of continuously mutating
data sets. This model relies on events: when a data is updated, a workflow
is implicitly created and it triggers a method that updates depending data.
Nephele [25] and MapReduce-Online [26] are two frameworks specialized for
parallel processing of large data-streams. Chimera [27] addresses the problem
of complex data flows in scientific applications by defining data as derivations
of other data. By keeping track of data history and dependencies, Chimera
allows to know how data have been computed in order to reproduce them,
to re-compute a set of data when its dependancies have been updated, and
to re-compute locally data from their meta-data instead of transferring them
whenever this would be more efficient. Although, these languages outline
the necessity of high level data-centric paradigms, none of them explicitly
address the key issues associated with DLCM.

The complexity of handling Big Data often necessitates to assemble sev-
eral class of heterogeneous infrastructures. For instance, [28, 29, 30] investi-
gate several options to efficiently deliver data to Cloud, Grids and Desktop
Grids infrastructures using P2P systems. More recently, several works have
investigated the possibility to execute MapReduce applications on Clouds
and Desktop Clouds [31, 32]. Our preliminary work around Active Data
[33, 34] have explored issue of representing data sets when there are dis-
tributed on hybrid infrastructures.
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There have been few works around the concept of Data Life Cycle to
improve the management of e-infrastructures. In [35], the authors introduce
a model for Scientific Data Lifecycle Management (SDLM), which is a generic
description of the different stages and processing steps for scientific data
sets when handled by e-science infrastructures. In [36], authors introduce
the concept of Grid Data Life Cycle (GDLC), and propose a system (also
called Active Data) to track how the data are computed across multiple Grid
systems so that data can be transparently recreated when needed during
execution. FRIEDA [37] leverages the DLC concept to provide description of
application-specific storage requirement and use this information for storage
planning and data deployment on Cloud infrastructures.

Scientific workflow systems such as Taverna [38], Galaxy [39], and
LONI [40] have been used in many domains including bioinformatics, ge-
nomics, astronomy, and medical imaging. Scientific workflows allow devel-
opers to describe and coordinate their multi-step computational tasks, for
example data acquisition, data conversion, and data analysis. Swift [41] al-
lows developers to script and automate the manipulation of large parallel
scientific dataflows. Pegasus [42] targets multiple kinds of infrastructures,
such as Desktops, campus Clusters, Grids, and Clouds. With Pegasus, sci-
entists develop workflows in high level terms without having to deal with the
details and the particularities of the underlying resource management mid-
dleware (Condor, Globus, or Amazon EC2). These systems allow researchers
to orchestrate a series of tools and services into a cohesive workflow while the
workflow system handles the flow of data between tools. In most cases the
workflow is described as a directed acyclic graph (DAG), where the nodes
are tasks and the edges denote the task dependencies. In contrast to Ac-
tive Data, workflow users must manually “wrap” tools and services before
they can be used in a workflow and they typically focus only on the analysis
components of the workflow.

Phoenix [43] is an inspiring example of a parallel programming model
which takes as a foundation principle the characteristics of the infrastruc-
ture. To address the problem of highly dynamic environments, where nodes
can join and leave the computation at any time, Phoenix constructs a set
of virtual nodes, on top of the physical nodes, where computations commu-
nicate through a message passing semantic. Event-based programming is a
paradigm which is strongly gaining in popularity, as witnesses the emergence
of mature or innovative frameworks such as Mace [44], libasync [45] or re-
cently Incontext [46]. However, such systems lack the abstractions specific to
data-intense computing that would allow to mix advanced data operations
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and data processing.
An emerging research challenge in e-Science is the question of data prove-

nance, i.e. maintaining the historical and causal record of data deriva-
tion [47]. Two issues when establishing data provenance are relevant to
our problematic. The first one is the question of the representation of data
lineage. Several approaches have been proposed in the literature [48], which
eventually lead to standardization: the Open Provenance model for instance,
which is a form of annotated causality graph [49]. The second question is how
to gather provenance information? One approach, illustrated by the Prove-
nance Aware Storage System [21, 50] is to capture events from the storage
system so that operations on files can be recorded and stored as meta-data
annotations. Although these works outline the necessity for investigating for-
mal representations of data-sets, our context differs and objectives diverge
as well. We want to capture the state of a dataset when it is deployed on the
entire infrastructure as well as all legitimate possible future operations.

There exist countless DLCM systems where Active Data could be imple-
mented aside, but systems that provide high level interfaces to data manage-
ment would be the ones that would benefit the most. We list some of them
and give hints about possible improvement. Data attributes is a feature pro-
posed by BitDew which allows the user to specify data behaviour such as
fault-tolerance, replication, file transfer protocol or affinity placement. The
implementation of Active Data and BitDew [15] together that we have pro-
posed in this paper would allow the programmer to take advantage of the
BitDew data attribute to wisely control and steer the distribution of data,
while using Active Data to program applications that could react on each
event happening during the distribution of the data set. Similarly, Chirp [51]
is aimed at data intensive applications in computational grids. It provides a
flexible file system that can be run and accessed by any user without kernel
changes or other administrator privileges. MosaStore [52] is a file system op-
timized for the main collective file pattern operations (gather/scatter, reduce,
broadcast) that can be found in workflows. Combined with MosaStore, Ac-
tive Data would allow to implement a workflow system that takes advantage
of these features.

7. Conclusion

We described Active Data, a programming model for supporting data life
cycle management applications. The starting point is the formal definition of
the data life cycle either within existing systems or defined by end-user ap-
plications. The Active Data execution runtime system permits user-provided
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code to be executed at each stage of the data life cycle (creation, replication,
transfer, deletion). An implementation of the model and runtime system
have been presented, along with its integration into five data management
systems. Several applications studies have been described, demonstrating
that the model genericity will facilitate the development of complex appli-
cations to manage large, dynamic and distributed data sets. Applications
investigated, although some were developed in few dozen lines of codes, al-
ready demonstrate significant performance and cost improvement. Scenarios
have also outlined more specific features of Active Data: a unified view of
data across heterogeneous systems, low overhead implementation, an API to
publish transitions and execute transition handlers, the ability to plug into
legacy systems.

Future works will focus on several aspects. The model can be extended
on the following directions: advanced representation of computations that
would investigate consumption and production of data items; representation
of collections of data items that would allow collective operations on data
sets. Concerning the implementation of Active Data, we plan to investigate
rollback mechanisms for fault-tolerant execution of applications and evaluate
distributed implementations of the publish/subscribe substrate. Finally, sev-
eral application prototypes are being developed using Active Data: a MapRe-
duce runtime which mixes low power mobile devices (tablets, set-top boxes,
smartphones) and online Cloud storage [31], a distributed and cooperative
content delivery network to distribute virtual appliance images embedding
large HEP applications to Internet Desktop Grid resources [53] and a dis-
tributed network of checkpoint image server featuring server selection using
network distance [54].
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